Aims/hypothesis A reliable method for in vivo quantification of pancreatic beta cell mass (BCM) could lead to further insight into the pathophysiology of diabetes. The glucagonlike peptide 1 receptor, abundantly expressed on beta cells, may be a suitable target for imaging. We investigated the potential of radiotracer imaging with the GLP-1 analogue exendin labelled with indium-111 for determination of BCM in vivo in a rodent model of beta cell loss and in patients with type 1 diabetes and healthy individuals. MethodsThe targeting of 111 In-labelled exendin was examined in a rat model of alloxan-induced beta cell loss. Rats were injected with 15 MBq 111 In-labelled exendin and single photon emission computed tomography (SPECT) acquisition was performed 1 h post injection, followed by dissection, biodistribution and ex vivo autoradiography studies of pancreatic sections. BCM was determined by morphometric analysis after staining with an anti-insulin antibody. For clinical evaluation SPECT was acquired 4, 24 and 48 h after injection of 150 MBq 111 In-labelled exendin in five patients with type 1 Maarten Brom and Wietske Woliner-van der Weg contributed equally to this study. Diabetologia (2014) 57:950-959 DOI 10.1007 diabetes and five healthy individuals. The tracer uptake was determined by quantitative analysis of the SPECT images. Results In rats, 111 In-labelled exendin specifically targets the beta cells and pancreatic uptake is highly correlated with BCM. In humans, the pancreas was visible in SPECT images and the pancreatic uptake showed high interindividual variation with a substantially lower uptake in patients with type 1 diabetes. Conclusions/interpretation These studies indicate that 111 Inlabelled exendin may be suitable for non-invasive quantification of BCM.
For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results.
Aims/hypothesis While the mechanisms of specification and the reciprocal relationships of the four types of endocrine cell (alpha, beta, delta and pancreatic polypeptide cells) within the human endocrine pancreas are well described in adults and during fetal development, ghrelin-immunoreactive cells (epsilon cells) remain poorly understood. Methods We studied epsilon cells in 24 human fetal pancreases between 11 and 39 weeks of development and in 32 pancreases from adult organ donors. Results We observed single epsilon cells scattered in primitive exocrine tissue from gestational week 13 in developing pancreas. Later in the developmental process, epsilon cells started to aggregate into clusters. From gestational week 21, epsilon cells were observed located around developing islets, forming an almost continuous layer at the peripheral rim of the islets. They remain localised on the mantle of the islets, although at different amounts, in the adult pancreas. Coproduction of ghrelin with insulin, glucagon or somatostatin was not detected during fetal development. Co-production with pancreatic polypeptide was evident sporadically. Epsilon cells co-produced NK2 homeobox 2 and ISL LIM homeobox 1, but not NK6 homeobox 1 and paired box 6. A quantitative analysis was performed in the adult pancreas: there was an average of 1.17+1.17 epsilon cells per islet, the relative epsilon cell volume was 0.14+0.16% and the epsilon cell mass was 0.13+0.15 g. Neither sex nor age affected the epsilon cell mass, although there was a significant inverse correlation with BMI. Conclusions/interpretation During fetal development epsilon cells show an ontogenetic and morphogenetic pattern that is distinct from that of alpha and beta cells.
Background The cervicovaginal microbiome (CVM) plays a significant role in women’s cervical health and disease. Microbial alterations at the species level and characteristic community state types (CST) have been associated with acquisition and persistence of high-risk human papillomavirus (hrHPV) infections that may result in progression of cervical lesions to malignancy. Current sequencing methods, especially most commonly used multiplex 16S rRNA gene sequencing, struggle to fully clarify these changes because they generally fail to provide sufficient taxonomic resolution to adequately perform species-level associative studies. To improve CVM species designation, we designed a novel sequencing tool targeting microbes at the species taxonomic rank and examined its potential for profiling the CVM. Results We introduce an accessible and practical circular probe-based RNA sequencing (CiRNAseq) technology with the potential to profile and quantify the CVM. In vitro and in silico validations demonstrate that CiRNAseq can distinctively detect species in a mock mixed microbial environment, with the output data reflecting its ability to estimate microbes’ abundance. Moreover, compared to 16S rRNA gene sequencing, CiRNAseq provides equivalent results but with improved sequencing sensitivity. Analyses of a cohort of cervical smears from hrHPV-negative women versus hrHPV-positive women with high-grade cervical intraepithelial neoplasia confirmed known differences in CST occurring in the CVM of women with hrHPV-induced lesions. The technique also revealed variations in microbial diversity and abundance in the CVM of hrHPV-positive women when compared to hrHPV-negative women. Conclusions CiRNAseq is a promising tool for studying the interplay between the CVM and hrHPV in cervical carcinogenesis. This technology could provide a better understanding of cervicovaginal CST and microbial species during health and disease, prompting the discovery of biomarkers, additional to hrHPV, that can help detect high-grade cervical lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.