Cataract is the leading cause of blindness worldwide. Epidemiological studies revealed up to a fivefold increased prevalence of cataracts in diabetic subjects. Metabolomics is nowadays frequently implemented to understand pathophysiological processes responsible for disease occurrence and progression. It has also been used recently to study the metabolic composition of aqueous humor (AH). AH is a transparent fluid which fills the anterior and posterior chambers of the eye. It supplies nutrients and removes metabolic waste from avascular tissues in the eye. The aim of this study was to use metabolomics to compare the AH of diabetic and non-diabetic patients undergoing cataract surgery. Several antioxidants (methyltetrahydrofolic acid, taurine, niacinamide, xanthine, and uric acid) were found decreased (-22 to -61%, p-value 0.05-0.003) in AH of diabetics. Also amino acids (AA) and derivatives were found decreased (-21 to -36%, p-value 0.05-0.01) while glycosylated AA increased (+75-98%, p-value 0.03-0.009) in this group of patients. Metformin was detected in AH of people taking this drug. To our knowledge, this is the first metabolomics study aiming to assess differences in AH composition between diabetic and non-diabetic patients with cataract. An increased oxidative stress and perturbations in amino acid metabolism in AH may be responsible for earlier cataract onset in diabetic patients.
Forensic toxicology and forensic medicine are unique among all other medical fields because of their essential legal impact, especially in civil and criminal cases. New high-throughput technologies, borrowed from chemistry and physics, have proven that metabolomics, the youngest of the “omics sciences”, could be one of the most powerful tools for monitoring changes in forensic disciplines. Metabolomics is a particular method that allows for the measurement of metabolic changes in a multicellular system using two different approaches: targeted and untargeted. Targeted studies are focused on a known number of defined metabolites. Untargeted metabolomics aims to capture all metabolites present in a sample. Different statistical approaches (e.g., uni- or multivariate statistics, machine learning) can be applied to extract useful and important information in both cases. This review aims to describe the role of metabolomics in forensic toxicology and in forensic medicine.
Aqueous humor (AH) is a transparent fluid which fills the anterior and posterior chambers of the eye. It supplies nutrients and removes metabolic waste from avascular tissues in the eye. Proper homeostasis of AH is required to maintain adequate intraocular pressure as well as optical and refractive properties of the eye. Application of metabolomics to study human AH may improve knowledge about the molecular mechanisms of eye diseases. Until now, global analysis of metabolites in AH has been mainly performed using NMR. Among the analytical platforms used in metabolomics, LC-MS allows for the highest metabolome coverage. The aim of this study was to develop a method for extraction and analysis of AH metabolites by LC-QTOF-MS. Different protocols for AH preparation were tested. The best results were obtained when one volume of AH was mixed with one volume of methanol : ethanol (1 : 1). In the final method, 2 µL of extracted sample was analyzed by LC-QTOF-MS. The method allowed for reproducible measurement of over 1000 metabolic features. Almost 250 metabolites were identified in AH and assigned to 47 metabolic pathways. This method is suitable to study the potential role of amino acids, lipids, oxidative stress, or microbial metabolites in development of ocular diseases.
Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.