The use of spectroscopic techniques has shown that human serum albumin (HSA) undergoes reversible self-aggregation through protein–protein interactions. It ensures the subsequent overlapping of electron clouds along with the stiffening of the conformation of the interpenetrating network of amino acids of adjacent HSA molecules. The HSA oxidation process related to the transfer of one electron was investigated by pulse radiolysis and photochemical methods. It has been shown that the irradiation of HSA solutions under oxidative stress conditions results in the formation of stable protein aggregates. The HSA aggregates induced by ionizing radiation are characterized by specific fluorescence compared to the emission of non-irradiated solutions. We assume that HSA dimers are mainly responsible for the new emission. Dityrosine produced by the intermolecular recombination of protein tyrosine radicals as a result of radiolysis of an aqueous solution of the protein is the main cause of HSA aggregation by cross-linking. Analysis of the oxidation process of HSA confirmed that the reaction of mild oxidants (Br2•−, N3•, SO4•−) with albumin leads to the formation of covalent bonds between tyrosine residues. In the case of •OH radicals and partly, Cl2•−, species other than DT are formed. The light emission of this species is similar to the emission of self-associated HSA.
We have shown that many proteins and enzymes (ovalbumin, β-lactoglobulin, lysozyme, insulin, histone, papain) undergo concentration-dependent reversible aggregation as a result of the interaction of the studied biomolecules. Moreover, irradiation of those protein or enzyme solutions under oxidative stress conditions results in the formation of stable soluble protein aggregates. We assume that protein dimers are mainly formed. A pulse radiolysis study has been made to investigate the early stages of protein oxidation by N3• or •OH radicals. Reactions of the N3• radical with the studied proteins lead to the generation of aggregates stabilized by covalent bonds between tyrosine residues. The high reactivity of the •OH with amino acids contained within proteins is responsible for the formation of various covalent bonds (including C–C or C–O–C) between adjacent protein molecules. In the analysis of the formation of protein aggregates, intramolecular electron transfer from the tyrosine moiety to Trp• radical should be taken into account. Steady-state spectroscopic measurements with a detection of emission and absorbance, together with measurements of the dynamic scattering of laser light, made it possible to characterize the obtained aggregates. The identification of protein nanostructures generated by ionizing radiation using spectroscopic methods is difficult due to the spontaneous formation of protein aggregates before irradiation. The commonly used fluorescence detection of dityrosyl cross-linking (DT) as a marker of protein modification under the influence of ionizing radiation requires modification in the case of the tested objects. A precise photochemical lifetime measurement of the excited states of radiation-generated aggregates is useful in characterizing their structure. Resonance light scattering (RLS) has proven to be an extremely sensitive and useful technique to detect protein aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.