TaCKX gene family members (GFMs) play essential roles in the regulation of cytokinin during wheat development and significantly influence yield-related traits. However, detailed function of most of them is not known. To characterize the role of TaCKX2.2 genes we silenced all homoeologous copies of both TaCKX2.2.1 and TaCKX2.2.2 by RNAi technology and observed the effect of silencing in 7 DAP spikes of T1 and T2 generations. The levels of gene silencing of these developmentally regulated genes were different in both generations, which variously determined particular phenotypes. High silencing of TaCKX2.2.2 in T2 was accompanied by slight down-regulation of TaCKX2.2.1 and strong up-regulation of TaCKX5 and TaCKX11, and expression of TaCKX1, TaCKX2.1, and TaCKX9 was comparable to the non-silenced control. Co-ordinated expression of TaCKX2.2.2 with other TaCKX GFMs influenced phytohormonal homeostasis. Contents of isoprenoid, active cytokinins, their conjugates, and auxin in seven DAP spikes of silenced T2 plants increased from 1.27 to 2.51 times. However, benzyladenine (BA) and abscisic acid (ABA) contents were significantly reduced and GA3 was not detected. We documented a significant role of TaCKX2.2.2 in the regulation of thousand grain weight (TGW), grain number, and chlorophyll content, and demonstrated the formation of a homeostatic feedback loop between the transcription of tested genes and phytohormones. We also discuss the mechanism of regulation of yield-related traits.
Background TaCKX wheat gene family members (GFMs) encode the enzyme cytokinin oxidase/dehydrogenase (CKX), which irreversibly degrades cytokinins. The genes are important regulators of cytokinin content and take part in growth and development, with a major impact on yield-related traits. The goal of this research was to test whether these genes might be differentially expressed in the field compared to laboratory conditions and consequently differently affect plant development and yield. Results We compared expression and crosstalk of the TaCKX GFMs and TaNAC2-5A gene in modern varieties grown in a growth chamber (GC) and in the field and looked for differences in their impact on yield-related traits. The TaNAC2-5A gene was included in the research since it was expected to play an important role in co-regulation of these genes. The range of relative expression levels of TaCKX GFMs and TaNAC2-5A gene among tested cultivars was from 5 for TaCKX8 to more than 100 for TaCKX9 in the GC and from 6 for TaCKX8 to 275 for TaCKX10 in the field. The range was similar for four of them in the GC, but was much higher for seven others and TaNAC2-5A in the field. The TaCKX GFMs and TaNAC2-5A form co-expression groups, which differ depending on growth conditions. Consequently, the genes also differently regulate yield-related traits in the GC and in the field. TaNAC2-5A took part in negative regulation of tiller number and CKX activity in seedling roots only in controlled GC conditions. Grain number and grain yield were negatively regulated by TaCKX10 in the GC but positively by TaCKX8 and others in the field. Some of the genes, which were expressed in seedling roots, negatively influenced tiller number and positively regulated seedling root weight, CKX activity in the spikes, thousand grain weight (TGW) as well as formation of semi-empty spikes. Conclusions We have documented that: 1) natural variation in expression levels of tested genes in both environments is very high, indicating the possibility of selection of beneficial genotypes for breeding purposes, 2) to create a model of an ideotype for breeding, we need to take into consideration the natural environment.
Members of the TaCKX gene family (GFMs) encode the cytokinin oxygenase/dehydrogenase enzyme (CKX), which irreversibly degrades cytokinins in the organs of wheat plants; therefore, these genes perform a key role in the regulation of yield-related traits. The purpose of the investigation was to determine how expression patterns of these genes, together with the transcription factor-encoding gene TaNAC2-5A, and yield-related traits are inherited to apply this knowledge to speed up breeding processes. The traits were tested in 7 days after pollination (DAP) spikes and seedling roots of maternal and paternal parents and their F2 progeny. The expression levels of most of them and the yield were inherited in F2 from the paternal parent. Some pairs or groups of genes cooperated, and some showed opposite functions. Models of up- or down-regulation of TaCKX GFMs and TaNAC2-5A in low-yielding maternal plants crossed with higher-yielding paternal plants and their high-yielding F2 progeny reproduced gene expression and yield of the paternal parent. The correlation coefficients between TaCKX GFMs, TaNAC2-5A, and yield-related traits in high-yielding F2 progeny indicated which of these genes were specifically correlated with individual yield-related traits. The most common was expressed in 7 DAP spikes TaCKX2.1, which positively correlated with grain number, grain yield, spike number, and spike length, and seedling root mass. The expression levels of TaCKX1 or TaNAC2-5A in the seedling roots were negatively correlated with these traits. In contrast, the thousand grain weight (TGW) was negatively regulated by TaCKX2.2.2, TaCKX2.1, and TaCKX10 in 7 DAP spikes but positively correlated with TaCKX10 and TaNAC2-5A in seedling roots. Transmission of TaCKX GFMs and TaNAC2-5A expression patterns and yield-related traits from parents to the F2 generation indicate their paternal imprinting. These newly shown data of nonmendelian epigenetic inheritance shed new light on crossing strategies to obtain a high-yielding F2 generation.
TaCKX family genes influence development of wheat plants by specific regulation of cytokinin content in different organs. However, their detailed role is not known. The TaCKX1, highly and specifically expressed in developing spikes and in seedling roots, was silenced by RNAi-mediated gene silencing via Agrobacterium and the effect of silencing was investigated in 7 DAP spikes of T1 and T2 generations. Various levels of TaCKX1 silencing in both generations influence different models of co-expression with other TaCKX genes and parameters of yield-related traits. Only a high level of silencing in T2 resulted in strong down-regulation of TaCKX11 (3), up-regulation of TaCKX2.1, 2.2, 5 and 9 (10), and a high yielding phenotype. This phenotype is characterised by higher spike number, grain number and grain yield, as well as slightly higher mass of seedling roots, but lower thousand grain weight (TGW) and slightly lower spike length. Content of most of cytokinin forms in 7 DAP spikes of silenced T2 lines increased from 40 to 76% compared to the non-silenced control. The CKs cross talk with other phytohormones.Each of the tested yield-related traits is regulated by various up- or down-regulated TaCKX genes and phytohormones. Unexpectedly, increased expression of TaCKX2.1 in silent for TaCKX1 T2 plants up-regulated trans- and cis-zeatin and trans-zeatin glucosides, determining lower TGW and chlorophyll content in flag leaves but higher grain yield. The coordinated effect of TaCKX1 silencing on expression of other TaCKX genes, phytohormone levels in 7 DAP spikes and yield-related traits in silenced T2 lines is presented.One-sentence summaryDifferent levels of TaCKX1 silencing influence various models of coordinated expression of TaCKX genes and phytohormone levels in 7 DAP spikes, as well as yield parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.