Deep neural networks (DNNs) have been used successfully for many image classification problems. One of the most important factors that determines the final efficiency of a DNN is the correct construction of the training set. Erroneously labeled training images can degrade the final accuracy and additionally lead to unpredictable model behavior, reducing reliability. In this paper, we propose MultiNET, a novel method for the automatic detection of noisy labels within image datasets. MultiNET is an adaptation of the current state-of-the-art confident learning method. In contrast to the original, our method aggregates the outputs of multiple DNNs and allows for the adjustment of detection sensitivity. We conduct an exhaustive evaluation, incorporating four widely used datasets (CIFAR10, CIFAR100, MNIST, and GTSRB), eight state-of-the-art DNN architectures, and a variety of noise scenarios. Our results demonstrate that MultiNET significantly outperforms the confident learning method.
Abstract-In the paper an implementation of signal processing chain for a passive radar is presented. The passive radar which was developed at the Warsaw University of Technology, uses FM radio and DVB-T television transmitters as "illuminators of opportunity". As the computational load associated with passive radar processing is very high, NVIDIA CUDA technology has been employed for effective implementation using parallel processing. The paper contains the description of the algorithms implementation and the performance results analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.