Ionic conductances underlying excitability in tonically firing neurons (TFNs) from substantia gelatinosa (SG) were studied by the patch-clamp method in rat spinal cord slices. Ca(2+)-dependent K(+) (K(CA)) conductance sensitive to apamin was found to prolong the interspike intervals and stabilize firing evoked by a sustained membrane depolarization. Suppression of Ca(2+) and K(CA) currents, however, did not abolish the basic pattern of tonic firing, indicating that it was generated by voltage-gated Na(+) and K(+) currents. Na(+) and K(+) channels were further analyzed in somatic nucleated patches. Na(+) channels exhibited fast activation and inactivation kinetics and followed two-exponential time course of recovery from inactivation. The major K(+) current was carried through tetraethylammonium (TEA)-sensitive rapidly activating delayed-rectifier (K(DR)) channels with a slow inactivation. The TEA-insensitive transient A-type K(+) (K(A)) current was very small in patches and was strongly inactivated at resting potential. Block of K(DR) rather than K(A) conductance by 1 mM TEA lowered the frequency and stability of firing. Intracellular staining with biocytin revealed at least three morphological groups of TFNs. Finally, on the basis of present data, we created a model of TFN and showed that Na(+) and K(DR) currents are sufficient to generate a basic pattern of tonic firing. It is concluded that the balanced contribution of all ionic conductances described here is important for generation and modulation of tonic firing in SG neurons.
To date, it has been difficult to reveal physiological Ca 2ϩ events occurring within the fine astrocytic processes of mature animals. The objective of the study was to explore whether neuronal activity evokes astrocytic Ca 2ϩ signals at glutamatergic synapses of adult mice. We stimulated the Schaffer collateral/commissural fibers in acute hippocampal slices from adult mice transduced with the genetically encoded Ca
The medullary reticular formation (MRF) of the neonatal mouse is organized so that the medial and lateral MRF activate hindlimb and trunk motoneurons (MNs) with differential predominance. The goal of the present study was to investigate whether this activation is polysynaptic and mediated by commissural interneurons with descending axons (dCINs) in the lumbar spinal cord. To this end, we tested the polysynapticity of inputs from the MRF to MNs and tested for the presence of selective inputs from medial and lateral MRF to 574 individual dCINs in the L2 segment of the neonatal mouse.Reticulospinal-mediated postsynaptic Ca 2ϩ responses in MNs were reduced in the presence of mephenesin and after a midline lesion, suggesting the involvement of dCINs in mediating the responses. Consistent with this, stimulation of reticulospinal neurons in the medial or lateral MRF activated 51% and 57% of ipsilateral dCINs examined (255 and 352 dCINs, respectively) and 52% and 46% of contralateral dCINs examined (166 and 133 dCINs, respectively). The proportion of dCINs that responded specifically to stimulation of medial or lateral MRF was similar to the proportions of dCINs that responded to both MRF regions or to neither. The three responsive dCIN populations had largely overlapping spatial distributions.We demonstrate the existence of dCIN subpopulations sufficient to mediate responses in lumbar motoneurons from reticulospinal pathways originating from the medial and lateral MRF. Differential control of trunk and hindlimb muscles by the medullary reticulospinal system may therefore be mediated in part by identifiable dCIN populations.
It is generally accepted that neurons in the ventral spinal grey matter, a substantial proportion of which can be regarded as constituents of the spinal motor apparatus, receive and integrate synaptic inputs arising from various peripheral, spinal and supraspinal sources. Thus, a profound knowledge concerning the integrative properties of interneurons in the spinal ventral grey matter appears to be essential for a fair understanding of operational principles of spinal motor neural assemblies. Using the whole cell patch clamp configuration in a correlative physiological and morphological experimental approach, here we demonstrate that the intrinsic membrane properties of neurons vary widely in laminae V-VII of the ventral grey matter of the neonatal rat lumbar spinal cord. Based on their firing patterns in response to depolarizing current steps, we have classified the recorded neurons into four categories: 'phasic', 'repetitive', 'single' and 'slow'. Neurons with firing properties characteristic of the 'phasic', 'repetitive' and 'single' cells have previously been reported also in the superficial and deep spinal dorsal horn, but this is the first account in the literature in which 'slow' neurons have been recovered and described in the spinal cord. The physiological heterogeneity in conjunction with the morphological correlation and distribution of neurons argues that different components of motor neural assemblies in the spinal ventral grey matter possess different signal processing characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.