Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.
In this work, we examined the in vitro cytotoxicity of new biodegradable surgical wires. The wires made of zinc with the addition of a small amount of magnesium (pure zinc, ZnMg 0.0026, ZnMg 0.0068, and ZnMg 0.08) have been investigated. The wires were produced using a technology based on extrusion and subsequent drawing. The resulting wires with a diameter of 0.8–1.0 mm are designed to be used in surgical operations related to bone joints. For cytotoxicity studies, we have selected human dental pulp stem cells (hDPSC) as the cell population representing normal osteoprogenitor cells. Considering that, after bone surgeries, the chance of osteosarcoma increases, we have compared the results obtained in hDPSC to those obtained with Saos-2 human osteosarcoma cell line. Cultured cells were exposed to the extracts obtained from the materials incubated in culture medium for 24 h with and without preincubation. Extracts of different ratios were examined. The results showed that the extracts obtained from wires made of ZnMg 0.0026 alloy exhibit high toxicity to Saos-2 osteosarcoma cells and low toxicity to hDPSC cells. This was in contrast to all reference materials, i.e., commercial surgical sutures made of steel and polymers, that did not display cytotoxicity toward osteosarcoma cells. Thus, the detected phenomenon for the ZnMg 0.0026 alloy can become the basis for creating biodegradable Zn-Mg surgical wires with antitumor activity.
In this work, a poly(L-lactide-co-glycolide) (PLGA)-based composite was enriched with one of the following sol-gel bioactive glasses (SBG) at 50 wt.%: A1—40 mol% SiO2, 60 mol% CaO, CaO/SiO2 ratio of 1.50; S1—80 mol% SiO2, 20 mol% CaO, CaO/SiO2 ratio of 0.25; A2—40 mol% SiO2, 54 mol% CaO, 6 mol% P2O5, CaO/SiO2 ratio of 1.35; S2—80 mol% SiO2,16 mol% CaO, 4 mol% P2O5, CaO/SiO2 ratio of 0.20. The composites and PLGA control sheets were then soaked for 24 h in culture media, and the obtained condition media (CM) were used to treat human bone marrow stromal cells (hBMSCs) for 72 h. All CMs from the composites increased ERK 1/2 activity vs. the control PLGA CM. However, expressions of cell migration-related c-Fos, osteopontin, matrix metalloproteinase-2, C-X-C chemokine receptor type 4, vascular endothelial growth factor, and bone morphogenetic protein 2 were significantly increased only in cells treated with the CM from the A1/PLGA composite. This CM also significantly increased the rate of human BMSC migration but did not affect cell metabolic activity. These results indicate important biological markers that are upregulated by products released from the bioactive composites of a specific chemical composition, which may eventually prompt osteoprogenitor cells to colonize the bioactive material and accelerate the process of tissue regeneration.
The MgCa0.7 alloy may be a promising material for biodegradable surgical wires. In this paper, the technology for producing surgical wires from this alloy has been developed, based both on finite element modelling and experimental study. In particular, the extrusion and hot-drawing effects on the mechanical properties, microstructures, in-vitro rates of biocorrosion, and cytotoxicity to human cancer cells (SaOS-2) and healthy (hPDL) ones, have been determined. An approximately 30–40% increase in corrosion rate due to increasing hot-drawing temperature was observed. An effect of hot-drawing temperature on cytotoxicity was also found. Notably, at various stages of the final wires’ production, the MgCa0.7 alloy became toxic to cancer cells. This cytotoxicity depended on the alloys’ processing parameters and was maximal for the as-extruded rod and for the wires immediately after hot drawing at 440 °C. Thus, the careful selection of processing parameters makes it possible to obtain a product that is not only a promising candidate for biodegradable surgical wires, but one which also has intrinsic bioactive properties that produce antitumor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.