Modular connectors are applied by computer users, and they can be metallic secondary sources containing metals such as gold and copper. Because gold is a micro-component, the solution obtained after the pin digestion contains a low concentration of gold(III) ions, and efficient and selective sorbent should be used for gold(III) ion recovery. The selective removal of small amounts of gold(III) from 0.001–6 M hydrochloric acid solutions using pure and solvent-impregnated macroporous polystyrene crosslinked with divinylbenzene sorbents (Purolite MN 202 and Cyanex 272) is presented. Gold(III) ions were recovered effectively from the chloride solution after the digestion of the modular connector RJ 45 (8P8C) using Purolite MN 202 after the impregnation process. The dependence of the recovery percentage (R%) of gold(III) on the contact time was determined. The highest value of gold(III) ion sorption capacity (259.45 mg·g−1) was obtained in 0.001 M HCl for Purolite MN202 after the Cyanex 272 impregnation. The results can be applied to gold recovery from e-waste. The presented method of gold recovery does not generate nitrogen oxides and does not require the use of cyanides.
Noble metals (NM) such as gold, platinum, palladium, and rhodium are widely applied in the electronics and automotive industries. Thus, the search for cheap and selective sorbents for noble metals is economically justified. Nitrolite does not sorb noble metal ions. A new impregnated sorbent was prepared. The natural sorbent Nitrolite was impregnated with Aliquat 336 using a new warm impregnation method. After the impregnation process, Nitrolite adsorbed platinum(IV), palladium(II), and gold(III) ions from the chloride solutions. The values of the sorption capacity for palladium(II) and platinum(IV) ions were 47.63 mg/g and 51.39 mg/g, respectively, from the 0.1 M HCl model solution. The sorption capacity for gold(III) ions was estimated to be 73.43 mg/g from the 0.1 M HCl model solution. An exhausted catalytic converter was leached, and platinum(IV), palladium(II), and rhodium(III) were transferred to the chloride solution. The impregnated sorbent Nitrolite–Aliquat 336 was used in the investigations of the platinum(IV), palladium(II), and rhodium(III) ions’ sorption from a real solution. The impregnated sorbent Nitrolite–Aliquat 336 proved to be suitable for the recovery of platinum(IV) and palladium(II) ions, whereas rhodium ions were not sorbed from the leached solutions. Notably, 1 M thiourea in the 1 M HCl solution desorbed platinum(IV), palladium(II), and gold(III) above 94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.