Abstract. Grain-size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy, this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain-size end-member modelling analysis. Between three and five robust grain-size end-member subpopulations were distinguished at different sites from similarly-likely end-member model runs. Their main modes were grouped and linked to common sediment transport and depositional processes that can be associated with contemporary Tibetan climate (precipitation patterns and lake ice phenology, gridded wind and shear stress data from the High Asia Reanalysis) and local catchment configurations. The coarse sands and clays with grain-size modes > 250 µm and < 2 µm were probably transported by fluvial processes. Aeolian sands (∼ 200 µm) and coarse local dust (∼ 60 µm), transported by saltation and in near-surface suspension clouds, are probably related to occasional westerly storms in winter and spring. Coarse regional dust with modes ∼ 25 µm may derive from near-by sources that keep in longer term suspension. The continuous background dust is differentiated into two robust end members (modes: 5-10 and 2-5 µm) that may represent different sources, wind directions and/or sediment trapping dynamics from long-range, upperlevel westerly and episodic northerly wind transport. According to this study grain-size end members of only fluvial origin contribute small amounts to mean Tibetan lake sedimentation (19 ± 5 %), whereas local to regional aeolian transport and background dust deposition dominate the clastic sedimentation in Tibetan lakes (contributions: 42 ± 14 % and 51 ± 11 %). However, fluvial and alluvial reworking of aeolian material from nearby slopes during summer seems to limit end-member interpretation and should be crosschecked with other proxy information. If not considered as a stand-alone proxy, a high transferability to other regions and sediment archives allows helpful reconstructions of past sedimentation history.
Grain size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain size end-member modelling analysis.
Between three and five robust grain size end-member subpopulations were distinguished at different sites from similarly-likely end-member model runs. Their main modes were grouped and linked to sediment transport and depositional processes associated with certain climatic background and catchment configurations.
The coarse sands and clays with grain size modes > 250 μm and < 2 μm were probably transported by fluvial processes. Aeolian sands (~ 200 μm) and coarse local dust (~ 60 μm), transported by saltation and in near-surface suspension clouds, are probably related to occasional westerly storms in winter and spring. Coarse regional dust with modes ~ 25 μm may derive from near-by sources that keep in longer-term suspension. The continuous background dust is differentiated into two robust end-members (modes: 5–10 and 2–5 μm) that may represent different sources, wind directions and/or sediment trapping dynamics from long-range, upper-level westerly and episodic northerly wind transport. According to this study grain size end-members of only fluvial origin contribute small amounts to mean Tibetan lake sedimentation (19 ± 5%), whereas local to regional aeolian transport and background dust deposition dominate the clastic sedimentation in Tibetan lakes (contributions: 42 ± 14% and 51 ± 11%). However, fluvial and alluvial reworking of aeolian material from nearby slopes during summer seems to limit end-member interpretation and should be crosschecked with other proxy information. If not considered as a stand-alone proxy, a high transferability to other regions and sediment archives allows helpful reconstructions of past sedimentation history
The spatial distribution of paleomagnetic secular variation (PSV) records on the Tibetan Plateau and adjacent areas covering the Holocene and Late Glacial is sparse. In order to reconstruct PSV in this area, a piston core covering the past 17.5 ka cal B.P. retrieved from Lake Tangra Yumco, southern‐central Tibetan Plateau, was analyzed. In the laminated sediments, several event layers are intercalated. Those were identified by sedimentological analysis and excluded for age‐depth modeling and interpretation. Paleomagnetic measurements on u‐channels reveal two contrasting core sections. The lower section (dated to 17.5–15.9 ka cal B.P.) is very coarse grained (up to 220 µm) and characterized by low intensities (0.8 mA m−1) and high maximum angular deviation values (mean 25°), making it unsuitable for PSV reconstruction. In contrast, the upper unit (dated to <15.9 ka cal B.P.) yields ideal properties with a well‐defined magnetization carried by low‐coercivity minerals in the pseudo single domain state making those younger sediments a proper record for PSV studies. The robustness of the PSV reconstruction for the past 3000 years is highlighted by a comparable inclination and declination pattern of three short sediment cores (2 m) from Tangra Yumco. On a regional scale, the obtained inclination signal for the past 15.9 ka cal B.P. is in good agreement with the Lake Baikal record (3000 km to the North), PSV stack for East Asia, as well as with predictions of geomagnetic field models. This study is a step forward in constructing a PSV reference curve for central Asia.
A possible asynchronicity of the spatial and temporal moisture availability on the Tibetan Plateau has been a controversial subject of discussion in recent years. Here we present the first attempt to systematically investigate possible spatial and temporal variations in moisture availability by examining two lakes, Tangra Yumco and Nam Co, on an east–west transect on the southern Tibetan Plateau using identical proxies for palaeoenvironmental reconstruction. In this study, an independent record from Tangra Yumco was analysed applying a multi‐proxy approach to reconstruct variations in moisture availability since the Lateglacial. Results were subsequently compared with previously published records from Nam Co and additional records from Tso Moriri (northwestern Himalaya) and Naleng Co (southeastern Tibetan Plateau). Our results show that Tangra Yumco was at least partially ice covered prior to 17.1 cal. ka BP. A temperature rise after 17.1 cal. ka BP probably resulted in thawing of the permafrost. At 16.0 cal. ka BP moisture availability increased, representing an initial monsoonal intensification. Warmer conditions between 13.0 and 12.4 cal. ka BP and cooler conditions between 12.4 cal. ka BP and the onset of the Holocene reflect the Bølling‐Allerød and Younger Dryas. At the onset of the Holocene moisture availability rapidly increased, with moisture highest prior to 8.5 cal. ka BP when temperatures were also highest. After 8.5 cal. ka BP the moisture availability gradually decreased and showed only minor amplitude variations. These findings are consistent with the records from large lakes like Nam Co, Tso Moriri, and Naleng Co, revealing a synchronous pattern of moisture availability on the southern Tibetan Plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.