Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE = 1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.
The hybrid treatment delivery system (HTDS) has been proposed as a possible option for a quality assurance in the multi-catheter interstitial brachytherapy for breast cancer patients. The system, which consists out of a prototype afterloader with an integrated electromagnetic tracking (EMT) sensor and an EMT system, allows the automatic measurement of implanted catheters.
To test the feasibility of the system for error detection, possible treatment planning errors and treatment delivery errors were simulated. Planning errors such as an incorrect offset value, an incorrect indexer length, tip/connector end swaps, and partial swaps, and; treatment delivery errors such as catheter shifts and catheter connection swaps were manually simulated using phantoms. An in-house Matlab routine was used to assess geometrical deviations between the dwell positions defined based on CT and EMT measurement. Additionally, the influence of implant motion on the detection ability of the system was assessed. An algorithm for the detection and specification of errors based on the error simulation results was developed. At the University Hospital Erlangen, a patient study is ongoing, where errors in patient data were analyzed using the proposed algorithm.
All simulated planning errors were detected. Catheter connection swaps can be detected 100% of the time. A shift detection rate of >97% was observed for shifts larger than 1.1 mm, both in the static and the motion measurements. Catheter reconstruction uncertainties and catheter shifts <2 mm were found to be the most common treatment planning and delivery errors in patient data. HTDS proved to be a reliable method for error detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.