These results confirm those of earlier studies and furthermore suggest that the somata of palisade endings are located close to the extraocular motor nuclei--in this case, probably within the C and S groups around the periphery of the oculomotor nucleus. The multiple en grappe endings have also been shown to arise from these cells groups, but it is not possible to distinguish different populations in these experiments.
Palisade endings (PEs), which are unique to the eye muscles, are associated with multiply innervated muscle fibers. They lie at the myotendinous junctions and form a cap around the muscle fiber tip. They are found in all animals investigated so far, but their function is not known. Recently, we demonstrated that cell bodies of PEs and tendon organs lie around the periphery of the oculomotor nucleus in the C- and S-groups. A morphological analysis of these peripheral neurons revealed the existence of different populations within the C-group. We propose that a small group of round or spindle-shaped cells gives rise to PEs, and another group of multipolar neurons provide the multiple motor endings. If PEs have a sensory function, then their cell body location close to motor neurons would be in an ideal location to control tension in extraocular muscles; in the case of the C-group, its proximity to the preganglionic neurons of the Edinger–Westphal nucleus would permit its participation in the near response. Despite their unusual properties, PEs may have a sensory function.
This article describes current views on motor and sensory control of extraocular muscles (EOMs) based on anatomical data. The special morphology of EOMs, including their motor innervation, is described in comparison to classical skeletal limb and trunk muscles. The presence of proprioceptive organs is reviewed with emphasis on the palisade endings (PEs), which are unique to EOMs, but the function of which is still debated. In consideration of the current new anatomical data about the location of cell bodies of PEs, a hypothesis on the function of PEs in EOMs and the multiply innervated muscle fibres they are attached to is put forward.
PurposeTo further chemically characterize palisade endings in extraocular muscles in rhesus monkeys.MethodsExtraocular muscles of three rhesus monkeys were studied for expression of the calcium-binding protein calretinin (CR) in palisade endings and multiple endings. The complete innervation was visualized with antibodies against the synaptosomal-associated protein of 25 kDa and combined with immunofluorescence for CR. Six rhesus monkeys received tracer injections of choleratoxin subunit B or wheat germ agglutinin into either the belly or distal myotendinous junction of the medial or inferior rectus muscle to allow retrograde tracing in the C-group of the oculomotor nucleus. Double-immunofluorescence methods were used to study the CR content in retrogradely labeled neurons in the C-group.ResultsA subgroup of palisade and multiple endings was found to express CR, only in the medial and inferior rectus muscle. In contrast, the en plaque endings lacked CR. Accordingly, within the tracer-labeled neurons of the C-group, a subgroup expressed CR.ConclusionsThe study indicates that two different neuron populations targeting nontwitch muscle fibers are present within the C-group for inferior rectus and medial rectus, respectively, one expressing CR, one lacking CR. It is possible that the CR-negative neurons represent the basic population for all extraocular muscles, whereas the CR-positive neurons giving rise to CR-positive palisade endings represent a specialized, perhaps more excitable type of nerve ending in the medial and inferior rectus muscles, being more active in vergence. The malfunction of this CR-positive population of neurons that target nontwitch muscle fibers could play a significant role in strabismus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.