SummaryA systematic review and meta‐analysis were conducted to assess the effectiveness of app‐based mobile interventions for improving nutrition behaviours and nutrition‐related health outcomes, including obesity indices (eg, body mass index [BMI]) and clinical parameters (eg, blood lipids). Seven databases were searched for studies published between 2006 and 2017. Forty‐one of 10 132 identified records were included, comprising 6348 participants and 373 outcomes with sample sizes ranging from 10 to 833, including 27 randomized controlled trials (RCTs). A beneficial effect of app‐based mobile interventions was identified for improving nutrition behaviours (g = 0.19; CI, 0.06‐0.32, P = .004) and nutrition‐related health outcomes (g = 0.23; CI, 0.11‐0.36, P < .001), including positive effects on obesity indices (g = 0.30; CI, 0.15‐0.45, P < .001), blood pressure (g = 0.21; CI, 0.01‐0.42, P = .043), and blood lipids (g = 0.15; CI, 0.03‐0.28, P = .018). Most interventions were composed of four behaviour change technique (BCT) clusters, namely, “goals/planning,” “feedback/monitoring,” “shaping knowledge,” and “social support.” Moderating effects including study design, type of app (commercial/research app), sample characteristics (clinical/non‐clinical sample), and intervention characteristics were not statistically significant. The inclusion of additional treatment components besides the app or the number or type of BCTs implemented did not moderate the observed effectiveness, which underscores the potential of app‐based mobile interventions for implementing effective and feasible interventions operating at scale for fighting the obesity epidemic in a broad spectrum of the population.
Research suggests that “healthy” food choices such as eating fruits and vegetables have not only physical but also mental health benefits and might be a long-term investment in future well-being. This view contrasts with the belief that high-caloric foods taste better, make us happy, and alleviate a negative mood. To provide a more comprehensive assessment of food choice and well-being, we investigated in-the-moment eating happiness by assessing complete, real life dietary behaviour across eight days using smartphone-based ecological momentary assessment. Three main findings emerged: First, of 14 different main food categories, vegetables consumption contributed the largest share to eating happiness measured across eight days. Second, sweets on average provided comparable induced eating happiness to “healthy” food choices such as fruits or vegetables. Third, dinner elicited comparable eating happiness to snacking. These findings are discussed within the “food as health” and “food as well-being” perspectives on eating behaviour.
Background Establishing a methodology for assessing nutritional behavior comprehensively and accurately poses a great challenge. Mobile technologies such as mobile image-based food recording apps enable eating events to be assessed in the moment in real time, thereby reducing memory biases inherent in retrospective food records. However, users might find it challenging to take images of the food they consume at every eating event over an extended period, which might lead to incomplete records of eating events (missing events). Objective Analyzing data from 3 studies that used mobile image-based food recording apps and varied in their technical enrichment, this study aims to assess how often eating events (meals and snacks) were missed over a period of 8 days in a naturalistic setting by comparing the number of recorded events with the number of normative expected events, over time, and with recollections of missing events. Methods Participants in 3 event-based Ecological Momentary Assessment (EMA) studies using mobile image-based dietary assessments were asked to record all eating events (study 1, N=38, 1070 eating events; study 2, N=35, 934 eating events; study 3, N=110, 3469 eating events). Study 1 used a basic app; study 2 included 1 fixed reminder and the possibility to add meals after the actual eating events occurred instead of in the moment (addendum); and study 3 included 2 fixed reminders, an addendum feature, and the option to record skipped meals. The number of recalled missed events and their reasons were assessed by semistructured interviews after the EMA period (studies 1 and 2) and daily questionnaires (study 3). Results Overall, 183 participants reported 5473 eating events. Although the momentary adherence rate as indexed by a comparison with normative expected events was generally high across all 3 studies, a differential pattern of results emerged with a higher rate of logged meals in the more technically intensive study 3. Multilevel models for the logging trajectories of reported meals in all 3 studies showed a significant, albeit small, decline over time (b=−.11 to −.14, Ps<.001, pseudo-R²=0.04-0.06), mainly because of a drop in reported snacks between days 1 and 2. Intraclass coefficients indicated that 38% or less of the observed variance was because of individual differences. The most common reasons for missing events were competing activities and technical issues, whereas situational barriers were less important. Conclusions Three different indicators (normative, time stability, and recalled missing events) consistently indicated missing events. However, given the intensive nature of diet EMA protocols, the effect sizes were rather small and the logging trajectories over time were remarkably stable. Moreover, the individual’s actual state and context seemed to exert a greater influence on adherence rates than stable individual differences, which emphasizes the need for a more nuanced understanding of the factors that affect momentary adherence.
Background Why do we eat? Our motives for eating are diverse, ranging from hunger and liking to social norms and affect regulation. Although eating motives can vary from eating event to eating event, which implies substantial moment-to-moment differences, current ways of measuring eating motives rely on single timepoint questionnaires that assess eating motives as situation-stable dispositions (traits). However, mobile technologies including smartphones allow eating events and motives to be captured in real time and real life, thus capturing experienced eating motives in-the-moment (states). Objective This study aimed to examine differences between why people think they eat (trait motives) and why they eat in the moment of consumption (state motives) by comparing a dispositional (trait) and an in-the-moment (state) assessment of eating motives. Methods A total of 15 basic eating motives included in The Eating Motivation Survey (ie, liking, habit, need and hunger, health, convenience, pleasure, traditional eating, natural concerns, sociability, price, visual appeal, weight control, affect regulation, social norms, and social image) were assessed in 35 participants using 2 methodological approaches: (1) a single timepoint dispositional assessment and (2) a smartphone-based ecological momentary assessment (EMA) across 8 days (N=888 meals) capturing eating motives in the moment of eating. Similarities between dispositional and in-the-moment eating motive profiles were assessed according to 4 different indices of profile similarity, that is, overall fit, shape, scatter, and elevation. Moreover, a visualized person × motive data matrix was created to visualize and analyze between- and within-person differences in trait and state eating motives. Results Similarity analyses yielded a good overall fit between the trait and state eating motive profiles across participants, indicated by a double-entry intraclass correlation of 0.52 (P<.001). However, although trait and state motives revealed a comparable rank order (r=0.65; P<.001), trait motives overestimated 12 of 15 state motives (P<.001; d=1.97). Specifically, the participants assumed that 6 motives (need and hunger, price, habit, sociability, traditional eating, and natural concerns) are more essential for eating than they actually were in the moment (d>0.8). Furthermore, the visualized person × motive data matrix revealed substantial interindividual differences in intraindividual motive profiles. Conclusions For a comprehensive understanding of why we eat what we eat, dispositional assessments need to be extended by in-the-moment assessments of eating motives. Smartphone-based EMAs reveal considerable intra- and interindividual differences in eating motives, which are not captured by single timepoint dispositional assessments. Targeting these differences between why people think they eat what they eat and why they actually eat in the moment may hold great promise for tailored mobile health interventions facilitating behavior changes.
Forecasting how we will react in the future is important in every area of our lives. However, people often demonstrate an "impact bias" which leads them to inaccurately forecast their affective reactions to distinct and outstanding future events. The present study examined forecasting accuracy for a day-to-day repetitive experience for which people have a wealth of past experiences (eating happiness), along with dispositional expectations toward eating ("foodiness"). Seventy-three participants (67.12% women, M age = 41.85 years) used a smartphone-based ecological momentary assessment to assess their food intake and eating happiness over 14 days. Eating happiness experienced in-the-moment showed considerable inter-and intra-individual variation, ICC = 0.47. Comparing forecasted and in-the-moment eating happiness revealed a significant discrepancy whose magnitude was affected by dispositional expectations and the variability of the experience. The results demonstrate that biased forecasts are a general phenomenon prevalent both in outstanding and well-known experiences, while also emphasizing the importance of inter-individual differences for a detailed understanding of affective forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.