The recombinant phage tail sheath protein, gp053, from Escherichia coli infecting myovirus vB_EcoM_FV3 (FV3) was able to self-assemble into long, ordered and extremely stable tubular structures (polysheaths) in the absence of other viral proteins. TEM observations revealed that those protein nanotubes varied in length (~10–1000 nm). Meanwhile, the width of the polysheaths (~28 nm) corresponded to the width of the contracted tail sheath of phage FV3. The formed protein nanotubes could withstand various extreme treatments including heating up to 100 °C and high concentrations of urea. To determine the shortest variant of gp053 capable of forming protein nanotubes, a set of N- or/and C-truncated as well as poly-His-tagged variants of gp053 were constructed. The TEM analysis of these mutants showed that up to 25 and 100 amino acid residues could be removed from the N and C termini, respectively, without disturbing the process of self-assembly. In addition, two to six copies of the gp053 encoding gene were fused into one open reading frame. All the constructed oligomers of gp053 self-assembled in vitro forming structures of different regularity. By using the modification of cysteines with biotin, the polysheaths were tested for exposed thiol groups. Polysheaths formed by the wild-type gp053 or its mutants possess physicochemical properties, which are very attractive for the construction of self-assembling nanostructures with potential applications in different fields of nanosciences.
A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis.
Until recently, quantitative polymerase chain reaction (qPCR) was considered a golden standard for the analysis of nucleic acids, yet the technological advances in microfluidics gave birth to a digital PCR (dPCR) technique that has shaken the analytical landscape. In the dPCR approach, the biological sample is partitioned into a limited but known number of compartments (e.g. wells, droplets, chambers) such that individual (single) target nucleic acid molecules, randomly distributed among compartments, are present either at 0 or 1 copy per single compartment. After the end-point PCR and digital visualization, the partitions containing the DNA molecules will emerge as fluorescent, while negative partitions (containing no DNA) will remain blank. By digitally counting the number of positive partitions, one can precisely estimate the absolute number of target molecules in the sample. In this chapter we focus on a droplet digital PCR (ddPCR) technique that, in contrast to other microfluidics-based systems, provides unmatched scalability and throughput. We discuss various experimental factors that should be considered before conducting ddPCR assays such as fluorophores, surfactants, molecular adsorption and leakage phenomena, template preparation and multiplexing amongst others. We compare three commercial ddPCR systems available to date and present a literature overview of the most important ddPCR applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.