Experimental cultivars of the pasture grass tall fescue are infected with unique strains of the fungal endophyte Neotyphodium coenophialum, which produce low concentrations of ergot alkaloids. A rat model was evaluated as a tool for rapid, initial screening of experimental cultivars considered to be nontoxic. Rats were fed diets that included seed from experimental cultivars of tall fescue with introduced strains of N. coenophialum and a toxic control diet containing seed of the cultivar Kentucky 31 (KY31), with its endemic strain of N. coenophialum. Rats were preconditioned to a nontoxic diet and then fed treatment diets for 13 days with 5 days at thermoneutrality (21 degrees C) followed by 8 days under heat stress (31 degrees C). For most of the 13-day treatment period, rats fed KY31 exhibited depressed daily intake compared to those fed diets of cultivars with introduced endophytes (P < 0.05). In addition, rats fed KY31 exhibited significantly less weight than rats on other diets after heat treatment was imposed. For all initial trials and repeated trials, total intake and total gain calculated at the end of each trial were the most consistent indicators of toxicity.
This research was conducted to develop procedures based on mycelial growth characteristics and patterns of esterase (EST) and polyphenol oxidase (PPO) production by diffuse mycelia for identification of Armillaria field isolates from Quercus-Carya-Pinus forests in the Ozark Mountains (central USA). The 285 isolates collected were first identified by standard diploid-haploid pairing tests as A. gallica, A. mellea, or A. tabescens. A strong PPO band was diagnostic for A. gallica. All A. mellea isolates tested and 91% of the A. tabescens isolates tested were distinguished based on production of EST bands in three standardized R f ranges. A procedure based on mycelial growth and morphology on tannic acid medium (TA) at 24 degrees C and on malt extract medium (ME) at 33 degrees C correctly identified 98% of A. gallica isolates and all A. mellea and A. tabescens isolates. On TA, A. gallica grew slowest. On ME, A. mellea grew slowest: mycelial morphology differed among species; A. gallica typically stained the agar and produced an appressed/submerged growth pattern with concentric bands of decreasing hyphal density, A. mellea typically did not stain the agar and produced round mycelia with smooth margins and abundant aerial hyphae, A. tabescens typically stained the agar and grew appressed/submerged with very irregular margins and patchy hyphal density. These are the first published systems evaluating the potential for identifying Armillaria field isolates based on their mycelial growth characteristics and EST and PPO complements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.