Residual liver function is the major factor influencing the outcome of patients after hepatectomy and can be predicted preoperatively by a combination of LiMAx and CT volumetry.
The vibrational dynamics of the retinal chromophore all-trans-to-13-cis photoisomerization in bacteriorhodopsin has been studied with mid-infrared absorption spectroscopy at high time resolution (about 200 femtoseconds). After photoexcitation of light-adapted bacteriorhodopsin, the transient infrared absorption was probed in a broad spectral region, including vibrations with dominant C-C, C=C, and C=NH stretching mode amplitude. All photoproduct modes, especially those around 1190 reciprocal-centimeters that are indicative for a 13-cis configuration of the chromophore, rise with a time constant of approximately 0.5 picosecond. The results presented give direct vibrational-spectroscopic evidence for the isomerization taking place within 0.5 picosecond, as has been suggested by previous optical femtosecond time-resolved experiments but questioned recently by picosecond time-resolved vibrational spectroscopy experiments.
Femtosecond time-resolved transient absorption spectroscopy was employed to characterize for the first time the primary photoisomerization dynamics of a bacterial phytochrome system in the two thermally stable states of the photocycle. The 85-kDa phytochrome Cph1 from the cyanobacterium Synechocystis PCC 6803 expressed in Escherichia coli was reconstituted with phycocyanobilin (Cph1-PCB) and phycoerythrobilin (Cph1-PEB). The red-light-absorbing form Pr of Cph1-PCB shows an approximately 150 fs relaxation in the S(1) state after photoexcitation at 650 nm. The subsequent Z-E isomerization between rings C and D of the linear tetrapyrrole-chromophore is best described by a distribution of rate constants with the first moment at (16 ps)(-1). Excitation at 615 nm leads to a slightly broadened distribution. The reverse E-Z isomerization, starting from the far-red-absorbing form Pfr, is characterized by two shorter time constants of 0.54 and 3.2 ps. In the case of Cph1-PEB, double-bond isomerization does not take place, and the excited-state lifetime extends into the nanosecond regime. Besides a stimulated emission rise time between 40 and 150 fs, no fast relaxation processes are observed. This suggests that the chromophore-protein interaction along rings A, B, and C does not contribute much to the picosecond dynamics observed in Cph1-PCB but rather the region around ring D near the isomerizing C(15) [double bond] C(16) double bond. The primary reaction dynamics of Cph1-PCB at ambient temperature is found to exhibit very similar features as those described for plant type A phytochrome, i.e., a relatively slow Pr, and a fast Pfr, photoreaction. This suggests that the initial reactions were established already before evolution of plant phytochromes began.
Ultrafast vibrational dynamics of cyclic hydrogen bonded dimers and the underlying microscopic interactions are studied in temporally and spectrally resolved pump-probe experiments with 100 fs time resolution. Femtosecond excitation of the O-H and/or O-D stretching mode gives rise to pronounced changes of the O-H/O-D stretching absorption displaying both rate-like kinetic and oscillatory components. A lifetime of 200 fs is measured for the v=1 state of the O-H stretching oscillator. The strong oscillatory absorption changes are due to impulsively driven coherent wave packet motions along several low-frequency modes of the dimer between 50 and 170 cm(-1). Such wave packets generated via coherent excitation of the high-frequency O-H/O-D stretching oscillators represent a clear manifestation of the anharmonic coupling of low- and high-frequency modes. The underdamped low-frequency motions dephase on a time scale of 1-2 ps. Calculations of the vibrational potential energy surface based on density functional theory give the frequencies, anharmonic couplings, and microscopic elongations of the low-frequency modes, among them intermolecular hydrogen bond vibrations. Oscillations due to the excitonic coupling between the two O-H or O-D stretching oscillators are absent as is independently confirmed by experiments on mixed dimers with uncoupled O-H and O-D stretching oscillators.
Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all- trans retinal in photoexcited bR to a highly twisted 13- cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.