In a Stackelberg max closure game, we are given a digraph whose vertices correspond to projects from which firms can choose and whose arcs represent precedence constraints. Some projects are under the control of a leader who sets prices in the first stage of the game, while in the second stage, the firms choose a feasible subset of projects of maximum value. For a single follower, the leader’s problem of finding revenue-maximizing prices can be solved in strongly polynomial time. In this paper, we focus on the setting with multiple followers and distinguish two situations. In the case in which only one copy of each project is available (limited supply), we show that the two-follower problem is solvable in strongly polynomial time, whereas the problem with three or more followers is NP-hard. In the case of unlimited supply, that is, when sufficient copies of each project are available, we show that the two-follower problem is already APX-hard. As a side result, we prove that Stackelberg min vertex cover on bipartite graphs with a single follower is APX-hard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.