Neuronal exocytosis is catalyzed by the SNARE protein syntaxin-1A1. Syntaxin-1A is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis2,3. However, how syntaxin-1A is sequestered is unknown. Here, we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). We found with super-resolution STED microscopy on the plasma membrane of PC12 cells that PIP2 is the dominant inner-leaflet lipid in ~73 nm-sized microdomains. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, co-reconstitution of PIP2 and the C-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independent of cholesterol or lipid phases.
Synaptotagmin-1 triggers Ca2+-sensitive, rapid neurotransmitter release by promoting the interaction of SNARE proteins between the synaptic vesicles and the plasma membrane. How synaptotagmin-1 promotes this interaction is controversial, and the massive increase in membrane fusion efficiency of Ca2+-synaptotagmin-1 has not been reproduced in vitro. However, previous experiments have been performed at relatively high salt concentrations, screening potentially important electrostatic interactions. Using functional reconstitution in liposomes, we show here that at low ionic strength SNARE-mediated membrane fusion becomes strictly dependent on both Ca2+ and synaptotagmin-1. Under these conditions, synaptotagmin-1 functions as a distance regulator: tethering the liposomes too far for SNARE nucleation in the absence of Ca2+, but brings the liposomes close enough for membrane fusion in the presence of Ca2+. These results may explain how the relatively weak electrostatic interactions of synaptotagmin-1 with membranes substantially accelerate fusion.
SNARE proteins mediate membrane fusion between synaptic vesicles and the plasma membrane. A minimized peptide SNARE model system with reduced complexity was introduced combining the native SNARE transmembrane (TMD) and linker domains with artificial coiled-coil forming peptides. Specific membrane fusion initiated by coiled-coil recognition was shown by lipid and content mixing vesicle assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.