Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
We investigated the main parameters [e.g. mean annual air temperature , mean annual soil temperature, mean annual precipitation, soil moisture (SM), soil chemistry, and physics] influencing soil organic carbon (C org ), soil total nitrogen (N t ) as well as plant available nitrogen (N min ) at 47 sites along a 1200 km transect across the high-altitude and low-latitude permafrost region of the central-eastern Tibetan Plateau. This large-scale survey allows testing the hypothesis that beside commonly used ecological variables, diversity of pedogenesis is another major component for assessing carbon (C) and nitrogen (N) cycling. The aim of the presented research was to evaluate consequences of permafrost degradation for C and N stocks and hence nutrient supply for plants, as the transect covers all types of permafrost including heavily degraded areas and regions without permafrost. Our results show that SM is the dominant parameter explaining 64% of C org and 60% of N variation. The extent of the effect of SM is determined by permafrost, current aeolian sedimentation occurring mostly on degraded sites, and pedogenesis. Thus, the explanatory power for C and N concentrations is significantly improved by adding CaCO 3 content (P 5 0.012 for C org ; P 5 0.006 for N t ) and soil texture (P 5 0.077 for C org ; P 5 0.015 for N t ) to the model. For soil temperature, no correlations were detected indicating that in high-altitude grassland ecosystems influenced by permafrost, SM overrides soil temperature as the main driving parameter at landscape scale. It was concluded from the current study that degradation of permafrost and corresponding changes in soil hydrology combined with a shift from mature stages of pedogenesis to initial stages, have severe impact on soil C and plant available N. This may alter biodiversity patterns as well as the development and functioning of the ecosystems on the Tibetan Plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.