In general, honey bees (Apis mellifera L.) feed on honey produced from collected nectar. In the absence of nectar, during certain times of the year or in monocultural landscapes, honey bees forage on honeydew. Honeydew is excreted by different herbivores of the order Hemiptera that consume phloem sap of plant species. In comparison to nectar, honeydew is composed of a higher variety of sugars and additional sugars with higher molecular weight, like the trisaccharide melezitose that can be a major constituent of honeydew. However, melezitose-containing honey is known to cause malnutrition in overwintering honey bees. Following the hypothesis that melezitose may be the cause for the so called 'honeydew flow disease', three independent feeding experiments with caged bees were conducted in consecutive years. Bees fed with melezitose showed increased food uptake, higher gut weights and elevated mortality compared to bees fed a control diet. Moreover, severe disease symptoms, such as swollen abdomen, abdomen tipping and impaired movement were observed in melezitose-fed bees. 16S-amplicon sequencing indicated that the melezitose diet changed the species composition of the lactic acid bacteria community within the gut microbiota. Based on these results, we conclude that melezitose cannot be easily digested by the host and may accumulate in the hindgut. Within cages or during winter, when there is no opportunity for excretion, the accumulated melezitose can cause severe intestinal symptoms and death of the bees, probably as result of poor melezitose metabolism capabilities in the intestinal microbiota. These findings confirm the causal relation between the trisaccharide melezitose and the honeydew flow disease and indicate a possible mechanism of pathogenesis. OPEN ACCESSCitation: Seeburger VC, D'Alvise P, Shaaban B, Schweikert K, Lohaus G, Schroeder A, et al. (2020) The trisaccharide melezitose impacts honey bees and their intestinal microbiota. PLoS ONE 15(4): e0230871. https://doi.org/10. Data Availability Statement:The 16S amplicon sequence data generated during the current study are available from Dryad using the doi: https://doi. org/10.5061/dryad.3ffbg79f8. symptoms of this food toxicosis are diverse: a high number of bees remain at the hive entrance instead of foraging, bees experience massive loss of hair (which may indicate complication with virus infections) and changes their behavioural patterns [3]. Even necrotic appearances could be shown in the midgut of honey bees when fed with honeydew honey in tent experiments [3]. This condition can deteriorate to a point where colonies collapse within short time. This is known to beekeepers and discussed in beekeeping journals [4], but the precise reason has remained unknown.Honey bees primarily forage on nectar. The three most common nectar sugars are the two monosaccharides glucose and fructose, and the disaccharide sucrose [5]. However, seasonally or locally nectar plants are lacking, and nectar is not available. In such situations honey bees tend to forage on honey...
Urban landscapes are often characterized by a wide range of diverse flowering plants consisting of native and exotic plants. These flower-rich habitats have proven to be particularly valuable for urban pollinating insects. However, the ability of ornamental plants in supporting urban pollinator communities is still not well documented. For this study, we established flower beds at 13 different urban testing sites, which were planted with identical sets of ornamental garden plants. The pollinator visitation patterns were then observed throughout the summer seasons. Over a two-year period, a total of 10,565 pollinators were recorded with wild bees (> 50%, excluding bumblebees) being the most abundant pollinator group. Our results revealed that (I) the assortment of ornamental plants was visited by a high number of urban pollinators for collecting pollen and nectar, and (II) the pollinator abundance and composition varied significantly within the tested ornamental plants. These differences occurred not only among plant species but to the same extent among cultivars, whereby the number of pollinators was positively correlated with number of flowering units per plant. By using a generalized linear mixed model (GLMM) and redundancy analysis (RDA) we identified further significant impacts of the two variables year and location on the insect pollinator abundance and richness. Despite of the local and yearly variations, our approach provided a good and field-applicable method to evaluate the pollinator friendliness in ornamental plants. Such tools are urgently required to validate labels like ‘bee friendly’ or ‘pollinator friendly’ used by plant breeding companies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.