Nanoencapsulation of active substances with controlled release in harmless matrices has been the subject of numerous scientific efforts mainly due to the significant biomedical potential of such endeavors. Lignin, the environmentally sustainable byproduct of the pulp and paper industry, contains a multitude of phenolic hydroxyl groups, some of which, are known to readily and strongly chelate with iron ions. In this effort we demonstrated that the concerted use of chelation chemistry, oil in water emulsion principles, and low energy sonication, offers a facile, one-pot strategy to assemble lignin nanocapsules (LNCs) of a controlled architecture. Under these conditions capsules are shown to rapidly assemble utilizing two driving forces, the π-stacking propensity of lignin and its metal chelating ability at alkaline pH. Detailed size exclusion chromatographic evidence validates that the formation of capsules is driven mainly by the enumerated physical interactions with no significant chemical modification of the lignin. The developed process was systematically optimized so as to create the foundations for the morphology and the yield of the capsules being modulated as a function of sonication time, power, and surface contact area. Both pure LNCs and Fe-LNCs were synthesized in high yields with size distributions varying from 0.3 to 6 μm and their release efficiencies were evaluated in detail. As anticipated, the complexation effects of the phenolic OH groups offered to the Fe-LNCs, increased stability, reduced shell thickness (allowing for greater loading efficiencies), and lower release kinetics, compared to LNCs.
Large efforts have been made trying to understand the origin of the high catalytic activity of dealloyed nanoporous gold as a green catalyst for the selective promotion of chemical reactions at low temperatures. Residual silver, left in the sample after dealloying of a gold-silver alloy, has been shown to have a strong influence on the activity of the catalyst. But the question of how the silver is distributed within the porous structure has not finally been answered yet. We show by quantitative energy dispersive X-ray tomography measurements that silver forms clusters that are distributed irregularly, both on the surface and inside the ligaments building up the porous structure. Furthermore, we find that the role of the residual silver is ambiguous. Whereas CO oxidation is supported by more residual silver, methanol oxidation to methyl formate is hindered. Structural characterisation reveals larger ligaments and pores for decreasing residual silver concentration
Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg⁻¹ protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.
To test for consequences of an exposure of brain cells to copper oxide nanoparticles (CuO-NPs), we synthesised and characterised dimercaptosuccinate-coated CuO-NPs. These particles had a diameter of around 5 nm as determined by transmission electron microscopy, while their average hydrodynamic diameter in aqueous dispersion was 136 ± 4 nm. Dispersion in cell-culture medium containing 10% fetal calf serum increased the hydrodynamic diameter to 178 ± 12 nm and shifted the zeta potential of the particles from -49 ± 7 mV (in water) to -10 ± 3 mV. Exposure of cultured primary brain astrocytes to CuO-NPs increased the cellular copper levels and compromised the cell viability in a time-, concentration- and temperature-dependent manner. Application of CuO-NPs in concentrations above 100 µM copper (6.4 µg/ml) severely compromised the viability of the cells, as demonstrated by a lowered 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction capacity, a lowered cellular lactate dehydrogenase activity and an increased membrane permeability for the fluorescent dye propidium iodide. Copper internalisation as well as cell toxicity of astrocytes exposed to CuO-NPs were similar to that observed for cells that had been incubated with copper salts. The CuO-NP-induced toxicity was accompanied by an increase in the generation of reactive oxygen species (ROS) in the cells. Both, ROS formation and cell toxicity in CuO-NP-treated astrocytes, were lowered in the presence of the cell-permeable copper chelator tetrathiomolybdate. These data demonstrate that CuO-NPs are taken up by cultured astrocytes and suggest that excess of internalised CuO-NPs cause cell toxicity by accelerating the formation of ROS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.