The water-soluble catalyst precursor [[(2,4,6-(3,5-(CF3)2C6H3)3-C6H2)-N═C(H)-(3-(9-anthryl)-2-O-C6H3)-κ(2)-N,O]Ni(CH3)(TPPTS)] (TPPTS = tri(sodiumphenylsulfonate)phosphine) polymerizes ethylene to aqueous dispersions of highly ordered nanoscale crystals (crystallinity χ(DSC) ≥ 90%) of strictly linear polyethylene (<0.7 methyl-branches/1000 carbon atoms, Mn = 4.2 × 10(5) g mol(-1)). SAXS in combination with cryo-TEM confirms this unusually high degree of order (χ(SAXS) = 82%) and shows the nanoparticles to possess a very thin amorphous layer on the crystalline lamella, just sufficient to accommodate a loop, but likely no entanglements. This ideal chain-folded structure is corroborated by annealing studies on the aqueous-dispersed nanoparticles, which show that the chain can move through the crystal as evidenced by lamella thickening without disturbing the crystalline order as concluded from an unaltered low thickness of the amorphous layers. These ideal chain-folded polyethylene nanocrystals arise from the crystallization in the confined environment of a nanoparticle and a deposition of the growing polymer chain on the crystal growth front as the chain is formed by the catalyst.
The effects of various kosmotropic and chaotropic cosolvents and salts on the intermolecular interaction potential of positively charged lysozyme is evaluated at varying protein concentrations by using synchrotron small-angle X-ray scattering in combination with liquid-state theoretical approaches. The experimentally derived static structure factors S(Q) obtained without and with added cosolvents and salts are analysed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential, which accounts for repulsive and attractive interactions between the protein molecules. Different cosolvents and salts influence the interactions between protein molecules differently as a result of changes in the hydration level or solvation, in charge screening, specific adsorption of the additives at the protein surface, or increased hydrophobic interactions. Intermolecular interaction effects are significant above protein concentrations of 1 wt %, and with increasing protein concentration, the repulsive nature of the intermolecular pair potential V(r) increases markedly. Kosmotropic cosolvents like glycerol and sucrose exhibit strong concentration-dependent effects on the interaction potential, leading to an increase of repulsive forces between the protein molecules at low to medium high osmolyte concentrations. Addition of trifluoroethanol exhibits a multiphasic effect on V(r) when changing its concentration. Salts like sodium chloride and potassium sulfate exhibit strong concentration-dependent changes of the interaction potential due to charge screening of the positively charged protein molecules. Guanidinium chloride (GdmCl) at low concentrations exhibits a similar charge-screening effect, resulting in increased attractive interactions between the protein molecules. At higher GdmCl concentrations, V(r) becomes more repulsive in nature due to the presence of high concentrations of Gdm(+) ions binding to the protein molecules. Our findings also imply that in calculations of thermodynamic properties of proteins in solution and cosolvent mixtures, activity coefficients may not generally be neglected in the concentration range above 1 wt % protein.
We combine mechanical rheometry, DWS, and SANS with a simulation model, the “pointer algorithm”, to obtain characteristic lengths and time constants for WLM solutions over a range of salt concentrations encompassing the transition from unentangled to entangled solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.