The contribution of metabolism to heat stress may play a significant role in defining robustness and recovery of systems; either by providing the energy and metabolites required for cellular homeostasis, or through the generation of protective osmolytes. However, the mechanisms by which heat stress attenuation could be adapted through metabolic processes as a stabilizing strategy against thermal stress are still largely unclear. We address this issue through metabolomic and transcriptomic profiles for populations along a thermal cline where two seagrass species, Zostera marina and Zostera noltii, were found in close proximity. Significant changes captured by these profile comparisons could be detected, with a larger response magnitude observed in northern populations to heat stress. Sucrose, fructose, and myo-inositol were identified to be the most responsive of the 29 analyzed organic metabolites. Many key enzymes in the Calvin cycle, glycolysis and pentose phosphate pathways also showed significant differential expression. The reported comparison suggests that adaptive mechanisms are involved through metabolic pathways to dampen the impacts of heat stress, and interactions between the metabolome and proteome should be further investigated in systems biology to understand robust design features against abiotic stress.
Methylamines occur ubiquitously in the oceans and can serve as carbon, nitrogen, and energy sources for heterotrophic bacteria from different phylogenetic groups within the marine bacterioplankton. Diatoms, which constitute a large part of the marine phytoplankton, are believed to be incapable of using methylamines as a nitrogen source. As diatoms are typically associated with heterotrophic bacteria, the hypothesis came up that methylotrophic bacteria may provide ammonium to diatoms by degradation of methylamines. This hypothesis was investigated with the diatom Phaeodactylum tricornutum and monomethylamine (MMA) as the substrate. Bacteria supporting photoautotrophic growth of P. tricornutum with MMA as the sole nitrogen source could readily be isolated from seawater. Two strains, Donghicola sp. strain KarMa, which harbored genes for both monomethylamine dehydrogenase and the N methylglutamate pathway, and Methylophaga sp. strain M1, which catalyzed MMA oxidation by MMA dehydrogenase, were selected for further characterization. While strain M1 grew with MMA as the sole substrate, strain KarMa could utilize MMA as a nitrogen source only when, e.g., glucose was provided as a carbon source. With both strains, release of ammonium was detected during MMA utilization. In coculture with P. tricornutum, strain KarMa supported photoautotrophic growth with 2 mM MMA to the same extent as with the equimolar amount of NH 4 Cl. In coculture with strain M1, photoautotrophic growth of P. tricornutum was also supported, but to a much lower degree than by strain KarMa. This proof-of-principle study with a synthetic microbial community suggests that interkingdom cross-feeding of ammonium from methylaminedegrading bacteria is a contribution to phytoplankton growth which has been overlooked so far. IMPORTANCEInteractions between diatoms and heterotrophic bacteria are important for marine carbon cycling. In this study, a novel interaction is described. Bacteria able to degrade monomethylamine, which is a ubiquitous organic nitrogen compound in marine environments, can provide ammonium to diatoms. This interkingdom metabolite transfer enables growth under photoautotrophic conditions in coculture, which would not be possible in the respective monocultures. This proof-of-principle study calls attention to a so far overlooked contribution to phytoplankton growth. W ithin the marine phytoplankton, diatoms (Bacillariophyceae) contribute significantly to the phototrophic primary production in the oceans (1). Typically, pelagic as well as benthic diatoms are associated with heterotrophic bacteria, leading to organismic interactions that range from commensal to antagonistic relationships (2). As the concentration of dissolved organic carbon is usually low in the water column of the oceans, heterotrophic bacteria can obviously profit from these interactions by using organic substrates released by the photoautotrophic diatoms. This mainly commensal relationship has been known for a long time and led to the definition of the phycosphere ...
Dissolved organic nitrogen (DON) compounds such as methylamines (MAs) and glycine betaine (GBT) occur at detectable concentrations in marine habitats and are also produced and released by microalgae. For many marine bacteria, these DON compounds can serve as carbon, energy, and nitrogen sources, but microalgae usually cannot metabolize them. Interestingly though, it was previously shown that Donghicola sp. strain KarMa—a member of the marine Rhodobacteraceae —can cross-feed ammonium such that the ammonium it produces upon degrading monomethylamine (MMA) then serves as nitrogen source for the diatom Phaeodactylum tricornutum ; thus, these organisms form a mutual metabolic interaction under photoautotrophic conditions. In the present study, we investigated whether this interaction plays a broader role in bacteria–diatom interactions in general. Results showed that cross-feeding between strain KarMa and P. tricornutum was also possible with di- and trimethylamine as well as with GBT. Further, cross-feeding of strain KarMa was also observed in cocultures with the diatoms Amphora coffeaeformis and Thalassiosira pseudonana with MMA as the sole nitrogen source. Regarding cross-feeding involving other Rhodobacteraceae strains, the in silico analysis of MA and GBT degradation pathways indicated that algae-associated Rhodobacteraceae -type strains likely interact with P. tricornutum in a similar manner as the strain KarMa does. For these types of strains (such as Celeribacter halophilus , Roseobacter denitrificans , Roseovarius indicus , Ruegeria pomeroyi , and Sulfitobacter noctilucicola ), ammonium cross-feeding after methylamine degradation showed species-specific patterns, whereas bacterial GBT degradation always led to diatom growth. Overall, the degradation of DON compounds by the Rhodobacteraceae family and the subsequent cross-feeding of ammonium may represent a widespread, organism-specific, and regulated metabolic interaction for establishing and stabilizing associations with photoautotrophic diatoms in the oceans.
The C1-compound monomethylamine can serve as a nitrogen, carbon, and energy source for heterotrophic bacteria. The marine alphaproteobacterium Donghicola sp. strain KarMa can use monomethylamine as a source only for nitrogen and not for carbon. Its draft genome sequence is presented here and reveals putative gene clusters for the methylamine dehydrogenase and the N-methylglutamate pathways for monomethylamine metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.