In both public and private sectors, one can notice a strong interest in the topic of sustainable food and packaging. For a long time, the spotlight for optimization was placed on well-known examples of high environmental impacts, whether regarding indirect resource use (e.g., meat, dairy) or problems in waste management. Staple and hedonistic foods such as cereals and confectionary have gained less attention. However, these products and their packaging solutions are likewise of worldwide ecologic and economic relevance, accounting for high resource input, production amounts, as well as food losses and waste. This review provides a profound elaboration of the status quo in cereal and confectionary packaging, essential for practitioners to improve sustainability in the sector. Here, we present packaging functions and properties along with related product characteristics and decay mechanisms in the subcategories of cereals and cereal products, confectionary and bakery wares alongside ready-to-eat savories and snacks. Moreover, we offer an overview to formerly and recently used packaging concepts as well as established and modern shelf-life extending technologies, expanding upon our knowledge to thoroughly understand the packaging’s purpose; we conclude that a comparison of the environmental burden share between product and packaging is necessary to properly derive the need for action(s), such as packaging redesign.
The usefulness of food packaging is often questioned in the public debate about (ecological) sustainability. While worldwide packaging-related CO2 emissions are accountable for approximately 5% of emissions, specific packaging solutions can reach significantly higher values depending on use case and product group. Unlike other groups, greenhouse gas (GHG) emissions and life cycle assessment (LCA) of cereal and confectionary products have not been the focus of comprehensive reviews so far. Consequently, the present review first contextualizes packaging, sustainability and related LCA methods and then depicts how cereal and confectionary packaging has been presented in different LCA studies. The results reveal that only a few studies sufficiently include (primary, secondary and tertiary) packaging in LCAs and when they do, the focus is mainly on the direct (e.g., material used) rather than indirect environmental impacts (e.g., food losses and waste) of the like. In addition, it is shown that the packaging of cereals and confectionary contributes on average 9.18% to GHG emissions of the entire food packaging system. Finally, recommendations on how to improve packaging sustainability, how to better include packaging in LCAs and how to reflect this in management-related activities are displayed.
Evaluating the stability of polyphenols in fruit, berry, and vegetable purees helps to assess the quality of these products during storage. This study aimed to (1) monitor the stability of total phenolic content (TPC) in four-grain puree with banana and blueberry (FGBB), mango-carrot-sea buckthorn puree (MCB), and fruit and yogurt puree with biscuit (FYB); (2) study the effect of aluminum-layered vs. aluminum-free packaging on the changes in TPC; and (3) assess the suitability of accelerated shelf-life testing (ASLT) methodology to evaluate the stability of polyphenols. The samples were stored at 23 °C for 182, 274, 365, and 427 days. The corresponding time points during ASLT at 40 °C were 28, 42, 56, and 66 days, calculated using Q10 = 3. The TPC was determined with Folin–Ciocalteu method. The results revealed that the biggest decrease in TPC took place with high-pH FGBB, which contained fewer ingredients with bioactive compounds. Minor changes were seen in FYB and MCB, which had lower pH values, and contained a larger amount of ingredients that include polyphenols. In addition, the choice of packaging material did not affect the TPC decrease in each puree. Finally, it was concluded that the ASLT methodology is suitable for studying the TPC changes in such purees, but the corresponding Q10 factors may vary and should be determined based on the chemical profile and ingredient list of the product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.