Depth information has been shown to affect identification of visually salient regions in images. In this paper, we investigate the role of depth in saliency detection in the presence of (i) competing saliencies due to appearance, (ii) depth-induced blur and (iii) centre-bias. Having established through experiments that depth continues to be a significant contributor to saliency in the presence of these cues, we propose a 3D-saliency formulation that takes into account structural features of objects in an indoor setting to identify regions at salient depth levels. Computed 3D saliency is used in conjunction with 2D saliency models through non-linear regression using SVM to improve saliency maps. Experiments on benchmark datasets containing depth information show that the proposed fusion of 3D saliency with 2D saliency models results in an average improvement in ROC scores of about 9% over state-of-the-art 2D saliency models.
Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multimodal uncertainty. Here, we describe a factored approach to estimate the poses of articulated objects using an efficient approach to nonparametric belief propagation. We consider inputs as geometrical models with articulation constraints and observed RGBD (red, green, blue, and depth) sensor data. The described framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov random field (MRF), where each hidden node (continuous pose variable) is an observed object-part’s pose and the edges denote the articulation constraints between the parts. We describe articulated pose estimation by a “pull” message passing algorithm for nonparametric belief propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. Robot experiments are provided to demonstrate the necessity of maintaining beliefs to perform goal-driven manipulation tasks.
Performing robust goal-directed manipulation tasks remains a crucial challenge for autonomous robots. In an ideal case, shared autonomous control of manipulators would allow human users to specify their intent as a goal state and have the robot reason over the actions and motions to achieve this goal. However, realizing this goal remains elusive due to the problem of perceiving the robot’s environment. We address and describe the problem of axiomatic scene estimation for robot manipulation in cluttered scenes which is the estimation of a tree-structured scene graph describing the configuration of objects observed from robot sensing. We propose generative approaches to scene inference (as the axiomatic particle filter, and the axiomatic scene estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as a scene graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation through symbolic inference for task planning and collision-free motion planning and execution. We demonstrate the results for goal-directed manipulation of multi-object scenes by a PR2 robot.
Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multi-modal uncertainty. In this paper, we propose a factored approach to estimate the poses of articulated objects using an efficient nonparametric belief propagation algorithm. We consider inputs as geometrical models with articulation constraints, and observed RGBD sensor data. The proposed framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov Random Field (MRF) where each hidden node (continuous pose variable) is an observed object-part's pose and the edges denote the articulation constraints between the parts. We propose articulated pose estimation by Pull Message Passing algorithm for Nonparametric Belief Propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects.
Decentralized coordination for multi-robot systems involves planning in challenging, high-dimensional spaces. The planning problem is particularly challenging in the presence of obstacles and different sources of uncertainty such as inaccurate dynamic models and sensor noise. In this paper, we introduce Stein Variational Belief Propagation (SVBP), a novel algorithm for performing inference over nonparametric marginal distributions of nodes in a graph. We apply SVBP to multi-robot coordination by modelling a robot swarm as a graphical model and performing inference for each robot. We demonstrate our algorithm on a simulated multi-robot perception task, and on a multi-robot planning task within a Model-Predictive Control (MPC) framework, on both simulated and real-world mobile robots. Our experiments show that SVBP represents multi-modal distributions better than sampling-based or Gaussian baselines, resulting in improved performance on perception and planning tasks. Furthermore, we show that SVBP's ability to represent diverse trajectories for decentralized multi-robot planning makes it less prone to deadlock scenarios than leading baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.