Genotype to phenotype correlations were most successful in children with GLUD1, GCK, and recessive KATP mutations. Correlations were complicated by the high frequency of novel missense KATP mutations that were uncharacterized, because such defects might be either recessive or dominant and, if dominant, be either responsive or unresponsive to diazoxide. Accurate and timely prediction of phenotype based on genotype is critical to limit exposure to persistent hypoglycemia in infants and children with congenital HI.
Background/Aims: In a family with congenital hyperinsulinism (HI), first described in the 1950s by McQuarrie, we examined the genetic locus and clinical phenotype of a novel form of dominant HI. Methods: We surveyed 25 affected individuals, 7 of whom participated in tests of insulin dysregulation (24-hour fasting, oral glucose and protein tolerance tests). To identify the disease locus and potential disease-associated mutations we performed linkage analysis, whole transcriptome sequencing, whole genome sequencing, gene capture, and next generation sequencing. Results: Most affecteds were diagnosed with HI before age one and 40% presented with a seizure. All affecteds responded well to diazoxide. Affecteds failed to adequately suppress insulin secretion following oral glucose tolerance test or prolonged fasting; none had protein-sensitive hypoglycemia. Linkage analysis mapped the HI locus to Chr10q21-22, a region containing 48 genes. Three novel noncoding variants were found in hexokinase 1 (HK1) and one missense variant in the coding region of DNA2. Conclusion: Dominant, diazoxide-responsive HI in this family maps to a novel locus on Chr10q21-22. HK1 is the more attractive disease gene candidate since a mutation interfering with the normal suppression of HK1 expression in beta-cells could readily explain the hypoglycemia phenotype of this pedigree.
These data indicate that MEN1 mutations are more common in insulinomas in children than in adults. Aneuploidy of chromosome 11 and other chromosomes is common in both MEN1 and non-MEN1 insulinomas. The novel observation of a paternal parent-of-origin effect in all MEN1 and most non-MEN1 tumors suggests a critical role for imprinted growth-regulatory genes in the 11p region in the genesis of β-cell endocrine tumors in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.