Mitochondrial Ca2+ (mCa2+) uptake
mediated by the mitochondrial calcium uniporter (MCU) plays a critical
role in signal transduction, bioenergetics, and cell death, and its
dysregulation is linked to several human diseases. In this study,
we report a new ruthenium complex Ru265 that is cell-permeable, minimally
toxic, and highly potent with respect to MCU inhibition. Cells treated
with Ru265 show inhibited MCU activity without any effect on cytosolic
Ca2+ dynamics and mitochondrial membrane potential (ΔΨm). Dose-dependent studies reveal that Ru265 is more potent
than the currently employed MCU inhibitor Ru360. Site-directed mutagenesis
of Cys97 in the N-terminal domain of human MCU ablates the inhibitory
activity of Ru265, suggesting that this matrix-residing domain is
its target site. Additionally, Ru265 prevented hypoxia/reoxygenation
injury and subsequent mitochondrial dysfunction, demonstrating that
this new inhibitor is a valuable tool for studying the functional
role of the MCU in intact biological models.
Highlights d L-lactate triggers ER Mg 2+ release that promotes mitochondrial Mg 2+ uptake d Mg 2+ is a second messenger for metabolic circuits d Limiting Mrs2-mediated Mg 2+ uptake enhances mitochondrial bioenergetics d Inflammation-induced lactate contributes to organ failure via m Mg 2+ surge
The disparate responses of leukemia cells to chemotherapy in vivo, compared to in vitro, is partly related to the interactions of leukemic cells and the 3 dimensional (3D) bone marrow stromal microenvironment. We investigated the effects of chemotherapy agents on leukemic cell lines co-cultured with human bone marrow mesenchymal stem cell (hu-BM-MSC) in 3D. Comparison was made to leukemic cells treated in suspension, or grown on a hu-BM-MSC monolayer (2D conditions). We demonstrated that leukemic cells cultured in 3D were more resistant to drug-induced apoptosis compared to cells cultured in 2D or in suspension. We also demonstrated significant differences in leukemic cell response to chemotherapy using different leukemic cell lines cultured in 3D. We suggest that the differential responses to chemotherapy in 3D may be related to the expression of N-cadherin in the co-culture system. This unique model provides an opportunity to study leukemic cell responses to chemotherapy in 3D.
The tricarboxylic acid (TCA) cycle converts the end products of glycolysis and fatty acid β-oxidation into the reducing equivalents NADH and FADH2. Although mitochondrial matrix uptake of Ca2+ enhances ATP production, it remains unclear whether deprivation of mitochondrial TCA substrates alters mitochondrial Ca2+ flux. We investigated the effect of TCA cycle substrates on MCU-mediated mitochondrial matrix uptake of Ca2+, mitochondrial bioenergetics, and autophagic flux. Inhibition of glycolysis, mitochondrial pyruvate transport, or mitochondrial fatty acid transport triggered expression of the MCU gatekeeper MICU1 but not the MCU core subunit. Knockdown of mitochondrial pyruvate carrier (MPC) isoforms or expression of the dominant negative mutant MPC1R97W resulted in increased MICU1 protein abundance and inhibition of MCU-mediated mitochondrial matrix uptake of Ca2+. We also found that genetic ablation of MPC1 in hepatocytes and mouse embryonic fibroblasts resulted in reduced resting matrix Ca2+, likely because of increased MICU1 expression, but resulted in changes in mitochondrial morphology. TCA cycle substrate–dependent MICU1 expression was mediated by the transcription factor early growth response 1 (EGR1). Blocking mitochondrial pyruvate or fatty acid flux was linked to increased autophagy marker abundance. These studies reveal a mechanism that controls the MCU-mediated Ca2+ flux machinery and that depends on TCA cycle substrate availability. This mechanism generates a metabolic homeostatic circuit that protects cells from bioenergetic crisis and mitochondrial Ca2+ overload during periods of nutrient stress.
SARS-CoV-2 is a newly identified coronavirus that causes the respiratory disease called coronavirus disease 2019 (COVID-19). With an urgent need for therapeutics, we lack a full understanding of the molecular basis of SARS-CoV-2-induced cellular damage and disease progression. Here, we conducted transcriptomic analysis of human PBMCs, identified significant changes in mitochondrial, ion channel, and protein quality-control gene products. SARS-CoV-2 proteins selectively target cellular organelle compartments, including the endoplasmic reticulum and mitochondria. M-protein, NSP6, ORF3A, ORF9C, and ORF10 bind to mitochondrial PTP complex components cyclophilin D, SPG-7, ANT, ATP synthase and a previously undescribed CCDC58 (Coiled-coil domain containing protein 58). Knockdown of CCDC58 or mPTP blocker cyclosporin A pretreatment enhances mitochondrial Ca
2+
retention capacity and bioenergetics. SARS-CoV-2 infection exacerbates cardiomyocyte autophagy and promotes cell death that was suppressed by cyclosporin A treatment. Our findings reveal that SARS-CoV-2 viral proteins suppress cardiomyocyte mitochondrial function that disrupts cardiomyocyte Ca
2+
cycling and cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.