External driving is emerging as a promising tool for exploring new phases in quantum systems. The intrinsically nonequilibrium states that result, however, are challenging to describe and control. We study the steady states of a periodically driven one-dimensional electronic system, including the effects of radiative recombination, electron-phonon interactions, and the coupling to an external fermionic reservoir. Using a kinetic equation for the populations of the Floquet eigenstates, we show that the steady-state distribution can be controlled using the momentum and energy relaxation pathways provided by the coupling to phonon and Fermi reservoirs. In order to utilize the latter, we propose to couple the system and reservoir via an energy filter which suppresses photon-assisted tunneling. Importantly, coupling to these reservoirs yields a steady state resembling a band insulator in the Floquet basis. The system exhibits incompressible behavior, while hosting a small density of excitations. We discuss transport signatures and describe the regimes where insulating behavior is obtained. Our results give promise for realizing Floquet topological insulators.
Conventional wisdom suggests that the long-time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal-entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy nonthermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit nonthermal behavior due to finite system size. We consider a one-dimensional system of spinless fermions with nearest-neighbor interactions where the interaction term is driven. Interestingly, even with no static component of the interaction, the quasienergy spectrum contains gaps and a significant fraction of the Floquet eigenstates, at all quasienergies, have nonthermal average doublon densities. We show that this nonthermal behavior arises due to emergent integrability at large interaction strength and discuss how the integrability breaks down with power-law dependence on system size.
Floquet engineering offers tantalizing opportunities for controlling the dynamics of quantum many body systems and realizing new nonequilibrium phases of matter. However, this approach faces a major challenge: generic interacting Floquet systems absorb energy from the drive, leading to uncontrolled heating which washes away the sought after behavior. How to achieve and control a non-trivial nonequilibrium steady state is therefore of crucial importance. In this work, we study the dynamics of an interacting one-dimensional periodically-driven electronic system coupled to a phonon heat bath. Using the Floquet-Boltzmann equation (FBE) we show that the electronic populations of the Floquet eigenstates can be controlled by the dissipation. We find the regime in which the steady state features an insulatorlike filling of the Floquet bands, with a low density of additional excitations. Furthermore, we develop a simple rate equation model for the steady state excitation density that captures the behavior obtained from the numerical solution of the FBE over a wide range of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.