Automated Gleason grading is an important preliminary step for quantitative histopathological feature extraction. Different from the traditional task of classifying small pre-selected homogeneous regions, semantic segmentation provides pixel-wise Gleason predictions across an entire slide. Deep learning-based segmentation models can automatically learn visual semantics from data, which alleviates the need for feature engineering. However, performance of deep learning models is limited by the scarcity of large-scale fully annotated datasets, which can be both expensive and time-consuming to create. One way to address this problem is to leverage external weakly labeled datasets to augment models trained on the limited data. In this paper, we developed an expectation maximization-based approach constrained by an approximated prior distribution in order to extract useful representations from a large number of weakly labeled images generated from low-magnification annotations. This method was utilized to improve the performance of a model trained on a limited fully annotated dataset. Our semi-supervised approach trained with 135 fully annotated and 1800 weakly annotated tiles achieved a mean Jaccard Index of 49.5% on an independent test set, which was 14% higher than the initial model trained only on the fully annotated dataset.
Objective
To demonstrate enabling multi-institutional training without centralizing or sharing the underlying physical data via federated learning (FL).
Materials and Methods
Deep learning models were trained at each participating institution using local clinical data, and an additional model was trained using FL across all of the institutions.
Results
We found that the FL model exhibited superior performance and generalizability to the models trained at single institutions, with an overall performance level that was significantly better than that of any of the institutional models alone when evaluated on held-out test sets from each institution and an outside challenge dataset.
Discussion
The power of FL was successfully demonstrated across 3 academic institutions while avoiding the privacy risk associated with the transfer and pooling of patient data.
Conclusion
Federated learning is an effective methodology that merits further study to enable accelerated development of models across institutions, enabling greater generalizability in clinical use.
Prostate cancer is the most common and second most deadly form of cancer in men in the United States. The classification of prostate cancers based on Gleason grading using histological images is important in risk assessment and treatment planning for patients. Here, we demonstrate a new
Despite the HIV “test-and-treat” strategy’s promise, questions about its clinical rationale, operational feasibility, and ethical appropriateness have led to vigorous debate in the global HIV community. We performed a systematic review of the literature published between January 2009 and May 2012 using PubMed, SCOPUS, Global Health, Web of Science, BIOSIS, Cochrane CENTRAL, EBSCO Africa-Wide Information, and EBSCO CINAHL Plus databases to summarize clinical uncertainties, health service challenges, and ethical complexities that may affect the test-and-treat strategy’s success. A thoughtful approach to research and implementation to address clinical and health service questions and meaningful community engagement regarding ethical complexities may bring us closer to safe, feasible, and effective test-and-treat implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.