Doping of heteroatom into well-structured mesoporous carbon architecture can significantly augment the capacitive performance. In this work, we report P-doped graphitic hollow carbon spheres (P-GHCS) grown over Fe-KIT-6 through the in situ approach using the catalytic CVD technique. The obtained P-GHCS possesses a relatively high surface area with uniform mesoporous structure, good graphitization with tunable P-doping contents. The highly favorable structure and desirable heteroatom doping were taken into account to evaluate the P-GHCS as a modified electrode material towards high-performance supercapacitor. The optimized P-GHCS-800 sample exhibits superior specific capacitance (Csp) 321 F g−1 at 0.2 A g−1 with outstanding cycling stability with 2.9% loss of its initial capacitance after 2000 cycles in 6 M KOH electrolyte background in the three-electrode computerized system. More importantly, the fabricated P-GHCS-800 symmetric supercapacitor device can withstand at a wide potential width of 2.0 V, together with remarkable cyclic stability (89.09%) after 2000 cycles at a current density of 1 A g−1 in aqueous 1 M Na2SO4 as electrolyte providing a relatively high energy density of 10.83 Wh kg−1 with a power density of 222.78 W kg−1. Additionally, we demonstrated the single symmetric supercapacitor cell which provided sufficient energy to turn on a red LED of 20 mW and emit light over a certain period of time opens up possible realistic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.