Abstract:We grafted thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) brushes from monodisperse SiO 2 microspheres through surface-initiated atom transfer radical polymerization (SI ATRP) to generate core-shell structured SiO 2 @PNIPAM microspheres (SPMs). Regular-sized SPMs dispersed in aqueous solution and packed as photonic crystals (PCs) in dry state. Because of the microscale of the SPMs, the packing behavior of the PCs in water can be observed by optical microscopy. By increasing the temperature above the lower critical solution temperature (LCST) of PNIPAM, the reversible swelling and shrinking of the PNIPAM shell resulted in dispersion and precipitation (three-dimensional aggregation) of the SPM in aqueous solution. The SPMs were microdispersed in a water layer to accommodate the aggregation along two dimensions. In the microdispersion, the SPMs are packed as PCs with microscale spacing between SPMs below the LCST. When the temperature is increased above the LCST, the microdispersed PCs exhibited a close-packed arrangement along two dimensions with decreased spacing between SPMs. The change in spacing with increasing temperature above the LCST resulted in a color change from red to blue, which could be observed by the naked eye at an incident angle. Thus, the SPM array could be applied as a visual temperature sensor.
The concurrent attachment and detachment movements of geckos on virtually any type of surface via their foot pads have inspired us to develop a thermal device with numerous arrangements of a multi-layer thin film together with electrodes that can help modify the temperature of the surface via application of a voltage. A sequential fabrication process was employed on a large-scale integration to generate well-defined contact hole arrays of photoresist for use as templates on the electrode-based device. The photoresist templates were then subjected to sputter deposition of the metallic glass ZrCuAlNi. Consequently, a metallic glass nanotube (MGNT) array having a nominal wall thickness of 100 nm was obtained after removal of the photoresist template. When a water droplet was placed on the MGNT array, close nanochambers of metallic glass were formed. By applying voltage, the surface was heated to increase the pressure inside the nanochambers; this generated an expanding force that raised the droplet; thus, the static water contact angle (SWCA) was increased. In contrast, a sucking force was generated during surface cooling, which decreased the SWCA. Our fabrication strategy exploits the MGNT array surface as nanosuckers, which can mimic the climbing aptitude of geckos as they attach to (>10 N m) and detach from (0.26 N m) surfaces at 0.5 and 3 V of applied voltage, respectively. Thus, the climbing aptitude of geckos can be mimicked by employing the processing strategy presented herein for the development of artificial foot pads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.