Increasing demand for food production with limited available water resources pose the threat to agricultural activities. The conjunctive allocation of water resources maximizes the net benefit of farmers efficiently. In this study, a novel hybrid optimization model was developed based on a genetic algorithm (GA), bacterial foraging optimization (BFO) and ant colony optimization (ACO) to maximize the net benefit of water deficit Sathanur reservoir command. The GA-based opti-mization model considered crop-related physical and economical parameters to derive optimal cropping patterns for three different conjunctive use policies and further allocation of surface and groundwater for different crops are enhanced with the BFO. The allocation of surface and groundwater for the head, middle and tail reach obtained from BFO is considered as input to ACO as a guiding mechanism to attain an optimal cropping pattern. Comparing the average produc-tivity values Policy 3 (3.665 Rs/m3) has better values relating to Policy 1 (3.662 Rs/m3) and Policy 2 (3.440 Rs/m3). Thus, the developed novel hybrid optimization model (GA-BFO-ACO) is very promising to enhance the farmer's net income as well as for the command area water conservation and can be replicated in other irrigated regions of the globe to overcome chronic land and water problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.