PurposeDissimilar joining of austenitic stainless steels and ferritic steels is a challenging task and has a wide range of applications due to its excellent mechanical and thermal characteristics. They are joined mostly by using conventional modes. In the current investigation, the study and optimization of hot wire TIG welding parameters was carried out.Design/methodology/approachThese parameters will govern the desired characteristics of the joint. Solutions were found out through multi-response optimization by using response surface methodology and single response optimization using particle swarm optimization.FindingsOptimized input welding parameters that were achieved are electrode current 180 amps, wire feed rate 1870 mm/min and hot wire current 98 amps and the optimized UTS is 665.45 MPa. The results from PSO were compared with RSM and the optimized input welding parameters for the electrode current, hot wire current and wire feed rate exhibited maximum ultimate tensile strength which were also confirmed from response and contour plots.Originality/valueSensitivity analysis was also performed to understand the effect of each individual parameters on the response. Microstructure features were evaluated for the joints and was found that the characteristics are within the desired criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.