We present here a metal-free, visible-light-and triphenylphosphine-mediated intermolecular, reductive amination between nitroarenes and boronic acids at ambient temperature without any photocatalyst. Mechanistically, a slow reduction of nitroarenes to a nitroso and, finally, a nitrene intermediate occurs that leads to the amination product with concomitant 1,2-aryl/-alkyl migration from a boronate complex. A wide range of nitroarenes underwent C−N coupling with aryl-/alkylboronic acids providing high yields.
Over the past few decades, an impressive array of C-H activation methodology has been developed for organic synthesis. However, due to the inherent inertness of the C-H bonds (e.g. ∼110 kcal mol for the cleavage of C(aryl)-H bonds) harsh reaction conditions have been realized to overcome high energetic transition states resulting in a limited substrate scope and functional group tolerance. Therefore, the development of mild C-H functionalization protocols is in high demand to exploit the full potential of the C-H activation strategy in the synthesis of a complex molecular framework. Although, electron-rich substrates undergo electrophilic metalation under relatively mild conditions, electron-deficient substrates proceed through a rate-limiting C-H insertion under forcing conditions at high temperature. In addition, a stoichiometric amount of toxic silver salt is frequently used in palladium catalysis to facilitate the C-H activation process which is not acceptable from the environmental and industrial standpoint. We report herein, a Pd(ii)-catalyzed decarboxylative C-H acylation of 2-arylpyridines with α-ketocarboxylic acids under mild conditions. The present protocol does not require stoichiometric silver(i) salts as additives and proceeds smoothly at ambient temperature. A novel decarbonylative C-H acylation reaction has also been accomplished using aryl glyoxals as acyl surrogates. Finally, a practical C-H acylation via a dehydrogenative pathway has been demonstrated using commercially available benzaldehydes and aqueous hydroperoxides. We also disclose that acetonitrile solvent is optimal for the acylation reaction at room temperature and has a prominent role in the reaction outcome. Control experiments suggest that the acylation reaction via decarboxylative, decarbonylative and dehydrogenative proceeds through a radical pathway. Thus we disclose a practical protocol for the sp C-H acylation reaction.
We report herein, a novel copper‐silver‐promoted alkynylation of ortho‐nitrobenzoic acids with arylacetylenic acids through a double decarboxylation. The present cross‐coupling is extremely challanging due to sluggish decarboxylation of arene carboxylates and deleterious oxidative Glaser‐Hay type homocoupling of terminal alkynes. Mechanistically, this sp2‐sp cross‐coupling may proceed through a silver‐assisted decarboxylation of 2‐nitrobenzoic acids followed by transmetalation with copper‐acetylide and reductive elimination. The ortho‐nitroacetylenic product is an important precursor for the synthesis of functionalized indoles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.