ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
AbstractIn this paper, an autonomous multiple target detection and tracking technique for dynamic scenes that are influenced by illumination variations, occlusions and camera instability is proposed. The framework combines a novel DynamicReverse Analysis (DRA) approach with an Enhanced Rao-Blackwellized Particle filter (E-RBPF) for multiple target detection and tracking respectively. The DRA method, in addition to providing accurate target localization, presents the E-RBPF scheme with costs associated with the differences in intensity caused by illumination variations between consecutive frame pairs in any video of a dynamic scene. The E-RBPF inherently models these costs, thus allowing the framework to a) adapt learning parameters, b) distinguish between cameramotion and object-motion, c) deal with sample degeneracy, d) provide appropriate appearance compensation during likelihood measurement and e) handle occlusion. The proposed detect-and-track method when compared against other competing baseline techniques has demonstrated superior performance both in accuracy and robustness on challenging videos from publicly available datasets.
In this paper, we describe a novel variational Monte Carlo approach for modeling and tracking body parts of articulated objects. An articulated object (human target) is represented as a dynamic Markov network of the different constituent parts. The proposed approach combines local information of individual body parts and other spatial constraints influenced by neighboring parts. The movement of the relative parts of the articulated body is modeled with local information of displacements from the Markov network and the global information from other neighboring parts. We explore the effect of certain model parameters (including the number of parts tracked; number of Monte-Carlo cycles, etc.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.