Background
Troponin elevation is common in hospitalized COVID-19 patients, but underlying aetiologies are ill-defined. We used multi-parametric cardiovascular magnetic resonance (CMR) to assess myocardial injury in recovered COVID-19 patients.
Methods and results
One hundred and forty-eight patients (64 ± 12 years, 70% male) with severe COVID-19 infection [all requiring hospital admission, 48 (32%) requiring ventilatory support] and troponin elevation discharged from six hospitals underwent convalescent CMR (including adenosine stress perfusion if indicated) at median 68 days. Left ventricular (LV) function was normal in 89% (ejection fraction 67% ± 11%). Late gadolinium enhancement and/or ischaemia was found in 54% (80/148). This comprised myocarditis-like scar in 26% (39/148), infarction and/or ischaemia in 22% (32/148) and dual pathology in 6% (9/148). Myocarditis-like injury was limited to three or less myocardial segments in 88% (35/40) of cases with no associated LV dysfunction; of these, 30% had active myocarditis. Myocardial infarction was found in 19% (28/148) and inducible ischaemia in 26% (20/76) of those undergoing stress perfusion (including 7 with both infarction and ischaemia). Of patients with ischaemic injury pattern, 66% (27/41) had no past history of coronary disease. There was no evidence of diffuse fibrosis or oedema in the remote myocardium (T1: COVID-19 patients 1033 ± 41 ms vs. matched controls 1028 ± 35 ms; T2: COVID-19 46 ± 3 ms vs. matched controls 47 ± 3 ms).
Conclusions
During convalescence after severe COVID-19 infection with troponin elevation, myocarditis-like injury can be encountered, with limited extent and minimal functional consequence. In a proportion of patients, there is evidence of possible ongoing localized inflammation. A quarter of patients had ischaemic heart disease, of which two-thirds had no previous history. Whether these observed findings represent pre-existing clinically silent disease or de novo COVID-19-related changes remain undetermined. Diffuse oedema or fibrosis was not detected.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a new rapidly spreading infectious disease. Current guidance from the World Health Organization (WHO) highlights asthmatics as a high-risk group for severe illness from COVID-19. Viruses are common triggers of asthma exacerbations and the current SARS-CoV-2 pandemic raises several questions regarding the optimum management strategies. Here, we discuss the contentious issue of whether the mainstay therapy systemic corticosteroids should be used in the routine management of COVID-19-associated asthma exacerbations. Recent guidance from the WHO has advised against the use of corticosteroids if COVID-19 is suspected due to concerns that these agents may impair protective innate antiviral immune responses. This may not be appropriate in the unique case of asthma exacerbation, a syndrome associated with augmented type 2 inflammation, a disease feature that is known to directly inhibit antiviral immunity. Corticosteroids, through their suppressive effects on type 2 inflammation, are thus likely to restore impaired antiviral immunity in asthma and, in contrast to non-asthmatic subjects, have beneficial clinical effects in the context of SARS-CoV-2 infection.
The rapid global spread and significant mortality associated with the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection has spurred an urgent race to find effective treatments. Repurposing existing drugs is a particularly attractive approach as pharmacokinetic and safety data already exist; thus, development can leapfrog straight to clinical trials of efficacy, generating results far more quickly than
de novo
drug development. This review summarizes the state of play for the principle drugs identified as candidates to be repurposed for treating COVID-19 grouped by broad mechanism of action: antiviral, immune enhancing, and antiinflammatory or immunomodulatory. Patient selection, particularly with regard to disease stage, is likely to be key. To date, only dexamethasone and remdesivir have been shown to be effective, but several other promising candidates are in trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.