Superscalar out-of-order cores deliver high performance at the cost of increased complexity and power budget. In-order cores, in contrast, are less complex and have a smaller power budget, but offer low performance. A processor architecture should ideally provide high performance in a power-and cost-efficient manner. Recently proposed slice-out-of-order (sOoO) cores identify backward slices of memory operations which they execute out-of-order with respect to the rest of the dynamic instruction stream for increased instruction-level and memory-hierarchy parallelism. Unfortunately, constructing backward slices is imprecise and hardware-inefficient, leaving performance on the table. In this paper, we propose Forward Slice Core (FSC), a novel core microarchitecture that builds on a stall-on-use in-order core and extracts more instruction-level and memory-hierarchy parallelism than slice-out-of-order cores. FSC does so by identifying and steering forward slices (rather than backward slices) to dedicated inorder FIFO queues. Moreover, FSC puts load-consumers that depend on L1 D-cache misses on the side to enable younger independent load-consumers to execute faster. Finally, FSC eliminates the need for dynamic memory disambiguation by replicating store-address instructions across queues. FSC improves performance by 9.7% on average compared to Freeway, the state-of-the-art sOoO core, across the SPEC CPU2017 benchmarks, while incurring reduced hardware complexity and a similar power budget.
Superscalar out-of-order cores deliver high performance at the cost of increased complexity and power budget. In-order cores, in contrast, are less complex and have a smaller power budget, but offer low performance. A processor architecture should ideally provide high performance in a power- and cost-efficient manner. Recently proposed
slice-out-of-order (sOoO)
cores identify backward slices of memory operations which they execute out-of-order with respect to the rest of the dynamic instruction stream for increased instruction-level and memory-hierarchy parallelism. Unfortunately, constructing backward slices is imprecise and hardware-inefficient, leaving performance on the table.
In this article, we propose
Forward Slice Core (FSC
), a novel core microarchitecture that builds on a stall-on-use in-order core and extracts more instruction-level and memory-hierarchy parallelism than slice-out-of-order cores. FSC does so by identifying and steering forward slices (rather than backward slices) to dedicated in-order FIFO queues. Moreover, FSC puts load-consumers that depend on L1 D-cache misses on the side to enable younger independent load-consumers to execute faster. Finally, FSC eliminates the need for dynamic memory disambiguation by replicating store-address instructions across queues. Considering 3-wide pipeline configurations, we find that FSC improves performance by 27.1%, 21.1%, and 14.6% on average compared to Freeway, the state-of-the-art sOoO core, across SPEC CPU2017, GAP, and DaCapo, respectively, while at the same time incurring reduced hardware complexity. Compared to an OoO core, FSC reduces power consumption by 61.3% and chip area by 47%, providing a microarchitecture with high performance at low complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.