Pyrene containing Schiff base molecule, namely 4-[(pyren-1-ylmethylene)amino]phenol (KB-1), was successfully synthesized and well characterized by using (1)H, (13)C NMR, FT-IR, and EI-MS spectrometry. UV-visible absorption, steady-state fluorescence, time-resolved fluorescence, and transient absorption spectroscopic techniques have been employed to elucidate the photophysical processes of KB-1. It has been demonstrated that the absorption characteristics of KB-1 have been bathochromatically tuned to the visible region by extending the π-conjugation. The extended π-conjugation is evidently confirmed by DFT calculations and reveals that π→π* transition is the major factor responsible for electronic absorption of KB-1. The photophysical property of KB-1 was carefully examined in different organic solvents at different concentrations and the results show that the fluorescence of this molecule is completely quenched due to photoinduced electron transfer. Intriguingly, the fluorescence intensity of KB-1 increases enormously by the gradual addition of water up to 90% with concomitant increase in fluorescence lifetime. This clearly signifies that this molecule has aggregation-induced emission (AIE) property. The mechanism of AIE of this molecule is suppression of photoinduced electron transfer (PET) due to hydrogen bonding interaction of imine donor with water. A direct evidence of PET process has been presented by using nanosecond transient absorption measurements. Further, KB-1 was successfully used for antimicrobial and bioimaging studies. The antimicrobial studies were carried out through disc diffusion method. KB-1 is used against both Gram-positive (Rhodococcus rhodochrous and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial species and also fungal species (Candida albicans). The result shows KB-1 can act as an excellent antimicrobial agent and as a photolabeling agent. S. aureus, P. aeruginosa, and C. albicans were found to be the most susceptible microorganisms at 1 mM concentration among the bacteria used in the present investigation.
Mononuclear nonheme iron(IV)-oxo complexes with two different topologies, cis-α-[Fe(IV)(O)(BQCN)](2+) and cis-β-[Fe(IV)(O)(BQCN)](2+), were synthesized and characterized with various spectroscopic methods. The effect of ligand topology on the reactivities of nonheme iron(IV)-oxo complexes was investigated in C-H bond activation and oxygen atom-transfer reactions; cis-α-[Fe(IV)(O)(BQCN)](2+) was more reactive than cis-β-[Fe(IV)(O)(BQCN)](2+) in the oxidation reactions. The reactivity difference between the cis-α and cis-β isomers of [Fe(IV)(O)(BQCN)](2+) was rationalized with the Fe(IV/III) redox potentials of the iron(IV)-oxo complexes: the Fe(IV/III) redox potential of the cis-α isomer was 0.11 V higher than that of the cis-β isomer.
A series of 1 : 1 iron(III) complexes of sterically hindered and systematically modified tridentate 3N donor ligands have been isolated and studied as functional models for extradiol-cleaving catechol dioxygenases. All of them are of the type [Fe(L)Cl(3)], where L is N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L1), N-ethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L2), N-benzyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L3), N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L4), N'-methyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L5), N'-ethyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L6) and N'-benzyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L7). They have been characterized by elemental analysis and spectral and electrochemical methods. The X-ray crystal structures of the complexes [Fe(L2)Cl(3)] 2, [Fe(L3)Cl(3)] 3 and [Fe(L7)Cl(3)] 7 have been successfully determined. All the three complexes possess a distorted octahedral coordination geometry in which the ligand is facially coordinated to iron(III) and the chloride ions occupy the remaining coordination sites. Upon replacing the N-ethyl group on the terminal nitrogen donor in 2 by the bulky N-benzyl group as in 3, the terminal Fe-N bond distance increases slightly from 2.229(5) A to 2.244(5) A. Upon incorporating the sterically demanding N-benzyl group on the central nitrogen donor in 4 to obtain 7, the central Fe-N(amine) bond distance increases from 2.181(5) A to 2.299(2) A. The catecholate adducts [Fe(L)(DBC)(Cl)] and [Fe(L)(DBC)(Sol)](+), where H(2)DBC is 3,5-di-tert-butylcatechol and Sol = solvent (H(2)O/DMF), have been generated in situ and their spectral and redox properties and dioxygenase activities have been studied in N,N-dimethylformamide and dichloromethane solutions. The adducts [Fe(L)(DBC)(Sol)](+) undergo cleavage of DBC(2-) in the presence of molecular oxygen to afford both intra- and extradiol cleavage products. The extradiol products are higher in dichloromethane than in DMF solution and the extradiol to intradiol product selectivity (E/I, 7.2 : 1-18.5 : 1) observed decreases upon increasing the steric bulk of N-alkyl substituent on the terminal nitrogen atom and upon incorporating an N-alkyl substituent on the central nitrogen atom. The plot of log(k(O(2))) vs. energy of the low energy catecholate-iron(III) LMCT band is linear, which is consistent with the proposal that the LMCT band energy corresponds to the energy needed for a spin-inversion process at the iron center upon dioxygen attack. Also, the rate of oxygenation is dictated by the solvent as well as the Lewis acidity of the iron(III) center, as shown by the linear plot of log(k(O(2))) vs.E(1/2) of the Fe(III)/Fe(II) redox potentials of the [Fe(L)(Sol)(3)](3+) complexes.
Anchoring groups play an important role in dye sensitized solar cells (DSCs). In order to acquire a suitable anchoring group for DSCs, a deeper understanding of the effect of anchoring groups on the ground and excited state properties of the dye is significant. In this context, various anchoring group connected pyrene derivatives are successfully synthesized and well characterized by using (1)H, (13)C-NMR, FT-IR and EI-MS spectrometry. The anchoring groups employed are carboxylic acid, malonic acid, acrylic acid, malononitrile, cyanoacrylic acid, rhodanine and rhodanine-3-acetic acid. The optimized geometries, HOMO-LUMO energy gap, light harvesting efficiency (LHE) and electronic absorption spectra of these dyes are studied by using density functional theory (DFT) calculations. The results show that pyrene connected with anchoring groups with weak electron pulling strength (PC, PAC and PMC) has a larger HOMO-LUMO energy gap, whereas that connected with anchoring groups with strong electron pulling strength (PCC, PMN, PR and PRA) has a reduced HOMO-LUMO energy gap. These molecules with a reduced energy gap are primarily preferred for DSC applications. Moreover, P, PC, PAC and PMC molecules undergo π→π* transition, whereas PCC, PMN, PR and PRA molecules show significant charge transfer along with π→π* transition. UV-visible absorption spectral studies on these dyes reveal that connecting various anchoring groups with different electron pulling abilities enables the pyrene chromophore to absorb in the longer wavelength region. Notably, an efficient bathochromic shift is observed for PCC, PMN, PR and PRA molecules in both electronic absorption and fluorescence spectral measurements, which suggests that the excitation is delocalized throughout the entire π-system of the molecules. Both theoretical and spectral studies reveal that dyes with an ICT character (PCC, PMN, PR and PRA) are suitable for dye sensitized solar cell applications.
A series of iron(III) complexes 1-4 of the tripodal tetradentate ligands N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L1), N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxy- propyl)amine H(L2), N,N-bis(pyrid-2-ylmethyl)-N-ethoxyethanolamine H(L3), and N-((pyrid-2-ylmethyl)(1-methylimidazol-2-ylmethyl))-N-(2-hydroxyethyl)amine H(L4), have been isolated, characterized and studied as functional models for intradiol-cleaving catechol dioxygenases. In the X-ray crystal structure of [Fe(L1)Cl(2)] 1, the tertiary amine nitrogen and two pyridine nitrogen atoms of H(L1) are coordinated meridionally to iron(III) and the deprotonated ethanolate oxygen is coordinated axially. In contrast, [Fe(HL3)Cl(3)] 3 contains the tertiary amine nitrogen and two pyridine nitrogen atoms coordinated facially to iron(III) with the ligand ethoxyethanol moiety remaining uncoordinated. The X-ray structure of the bis(μ-alkoxo) dimer [{Fe(L5)Cl}(2)](ClO(4))(2)5, where HL is the tetradentate N(3)O donor ligand N,N-bis(1-methylimidazol-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L5), contains the ethanolate oxygen donors coordinated to iron(III). Interestingly, the [Fe(HL)(DBC)](+) and [Fe(HL3)(HDBC)X] adducts, generated by adding ∼1 equivalent of piperidine to solutions containing equimolar quantities of iron(III) complexes 1-5 and H(2)DBC (3,5-di-tert-butylcatechol), display two DBC(2-)→ iron(III) LMCT bands (λ(max): 1, 577, 905; 2, 575,915; 3, 586, 920; 4, 563, 870; 5, 557, 856 nm; Δλ(max), 299-340 nm); however, the bands are blue-shifted (λ(max): 1, 443, 700; 2, 425, 702; 3, 424, 684; 4, 431, 687; 5, 434, 685 nm; Δλ(max), 251-277 nm) on adding 1 more equivalent of piperidine to form the adducts [Fe(L)(DBC)] and [Fe(HL3)(HDBC)X]. Electronic spectral and pH-metric titration studies in methanol disclose that the ligand in [Fe(HL)(DBC)](+) is protonated. The [Fe(L)(DBC)] adducts of iron(III) complexes of bis(pyridyl)-based ligands (1,2) afford higher amounts of intradiol-cleavage products, whereas those of mono/bis(imidazole)-based ligands (4,5) yield mainly the auto-oxidation product benzoquinone. It is remarkable that the adducts [Fe(HL)(DBC)](+)/[Fe(HL3)(DBC)X] exhibit higher rates of oxygenation affording larger amounts of intradiol-cleavage products and lower amounts of benzoquinone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.