A novel solid polymer electrolyte based on poly vinyl alcohol (PVA) with oxalic acid was prepared by the solution caste technique. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements carried out on the samples clearly revealed the modification of the PVA structure; the PVA crystallinity was reduced with increasing oxalic acid content and became more amorphous. The surface morphology of these complexed polymer electrolytes was analyzed by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) spectral studies of the samples suggested that the interaction between H + ions of oxalic acid and oxygen of the hydroxyl group (OH) of PVA plays a major role in proton conductivity. The optical absorption studies were performed on these samples in a range of wave numbers from 200 nm to 600 nm and the optical band gap values were evaluated. Direct current (DC) conductivity was measured and temperature dependence in the range 27-273°C was studied. It was observed that the conductivity at temperatures beyond the glass transition temperature (T g ) showed a Vogel-Tamman-Fulcher (VTF) type behavior. The electrical conductivity studies on PVA with oxalic acid, in a 70:30 proportion by wt%, demonstrated that the polymer composite is a promising electrolyte for applications in electrochemical cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.