Temperature monitoring is an important procedure to control the composting process. Due to cost limitation, temperature monitoring is manual and with daily sampling resolution. The objective of this study was to develop an automatic station with US$ 150 dollars, able to monitor air temperature at two different points in a compost pile, with a 5-min time resolution. In the calibration test, the sensors showed an estimated uncertainty from ± 1 to ± 1.9 ºC. In the field validation test, the station guaranteed secure autonomy for seven days and endured high humidity and extreme temperature (> 70 °C).
Soil moisture is a key environmental variable for developing a coupled hydrological and biogeochemical modeling approach. It is recognized that a relationship does exist between water stress and emission of volatile organic compounds (VOCs) in forested areas, which may have negative effect on human health and ecosystems. Therefore it is necessary to achieve a better understanding of the land phase of the hydrological cycle, namely soil moisture estimation, which modulates surface energy balance and consequently vegetation cover patterns. This work focuses on a new methodological approach to evaluate the spatial variability of surface soil moisture at the field scale using the Bayesian kriging model jointly with TDR measurements and Landsat 8-TM remotely sensed image. The analysis looked for quantifying different deterministic sources of variability, measurement errors and also components not well understood of variability. In particular, the spatial distribution of in situ measurements and digital image data in a scene provided by remote sensing technology is addressed through a geostatistical framework. This technique is explored as alternative to the regression techniques currently used for modeling soil moisture mapping. Tests conducted on an extensively sampled pasture field showed significant improvement, which suggests that the methodological approach could be applied at the watershed scale for validating remotely sensed datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.