Peri- and postpubertal boars accumulate substances (e.g., androstenone and skatole) in their fatty tissue that are responsible for boar taint in pork. The objective of this study was to assess the efficacy of a GnRH vaccine, Improvac, in eliminating boar taint. Three hundred male (200 intact boars, 100 barrows) crossbred (Large White x Landrace) pigs were used in a 2 x 3 factorially arranged experiment. The respective factors were sex group (barrows, boars treated with placebo, or boars treated with Improvac) and slaughter age (23 or 26 wk). Vaccines were administered 8 and 4 wk before slaughter. All Improvac-treated pigs exhibited anti-GnRH titers. Testes and bulbo-urethral gland weights in treated pigs were reduced by approximately 50% (P < 0.001) and serum testosterone levels were below 2 ng/mL in the majority of treated boars (94 and 92% across both age groups at 2 and 4 wk, respectively). Boar taint, as assessed by the concentration of androstenone and skatole in s.c. fat, was suppressed to low or undetectable levels in 100% of Improvac-treated boars. No Improvac-treated pigs had significant concentrations of either androstenone (> 1.0 microg/g) or skatole (> 0.20 microg/g). In contrast, 49.5% of placebo-treated controls had significant androstenone and 10.8% had significant skatole levels, resulting in 10% of the control boars with high concentrations of both compounds. The mean concentrations of taint compounds in the Improvac-treated pigs were not significantly different from those in barrows. Improvac-treated boars grew more rapidly (P = 0.051 and < 0.001 for pigs slaughtered at 23 and 26 wk of age, respectively) than control boars over the 4 wk after the secondary vaccination, possibly because of reduced sexual and aggressive activities. Compared with barrows, Improvac-treated boars were leaner and had superior feed conversion efficiency. The vaccine was well tolerated by the pigs, and no observable site reactions could be detected at the time of slaughter. Vaccination of boars with Improvac allows production of heavy boars with improved meat quality through prevention and control of boar taint.
Roxarsone, (4-hydroxy-3-nitrophenyl)arsonic acid, is an arsenic-containing compound that has been approved as a feed additive for poultry and swine since the 1940s; however, little information is available regarding residual arsenic species present in edible tissues. We developed a novel method for the extraction and quantification of arsenic species in chicken liver. A strongly basic solution solubilized the liver, and ultrafiltration removed macromolecules and particulate material. Ion chromatography separated the species [arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, (4-hydroxy-3-aminophenyl)arsonic acid, (4-hydroxy-3-acetaminophenyl)arsonic acid, and roxarsone] in the extracts, which were then detected by inductively coupled plasma–mass spectrometry. The extraction oxidized most arsenite to arsenate. For fortification concentrations at 2 μg kg–1 and above, recoveries ranged from 70 to 120%, with relative standard deviations from 7 to 34%. We detected roxarsone, its 3-amino and 3-acetamido metabolites, inorganic arsenic, and additional unknown arsenic species in livers from roxarsone-treated chickens. Both the originating laboratory and a second laboratory validated the method.
This study was initiated to determine whether a comparative pharmacokinetic (PK) approach could be used to expand the pool of approved anthelmintics for minor ruminant species. Accordingly, the PK profiles of six anthelmintics (levamisole, albendazole, fenbendazole, moxidectin, doramectin, and ivermectin) in sheep, goats, and cattle were determined. The PK values determined for each anthelmintic included Tmax, Tlast, Cmax, AUC, AUC/dose, and Cmax/dose. The results of this study demonstrate that a comparative PK approach does not show commonality in the way these six anthelmintics are individually processed by these three ruminants. While some drugs demonstrated identical PK profiles between sheep and goats, none of these drugs demonstrated PK profiles in sheep and goats comparable to the PK profiles found in cattle. The results from this study suggest drug approval across these three ruminants is not a viable concept. However, the resulting PK profiles for each combination of drug and ruminant species represents a new dataset that can be used to support the US FDA Center for Veterinary Medicine's Minor Use/Minor Species indexing process for drug approvals in minor species such as sheep and goats.
Eighteen Holstein dairy cows ranging in body weight from 500-700 kg and with an average milk yield of 37 ± 6 kg/day were used to investigate the depletion of florfenicol (FFL) in milk and plasma of dairy cows. Three groups of six were administered FFL: Group A, intramammary (IMM) infusion of ~2.5 mg FFL/kg BW at three consecutive milking intervals (total amount of ~7.5 mg/kg BW); Group B, one IMM infusion (20 mg/kg BW) into one quarter and Group C, one subcutaneous (SC) treatment (40 mg/kg BW). IMM infusions were into the right front quarter. Cows were milked daily at 06:00 and 18:00 h. The highest concentrations (C ) and time to C (T ) were: 1.6 ± 2.2 μg·FFL/mL milk at 22 h (Group A), 5.5 ± 3.6 μg·FFL/mL milk at 12 h (Group B), and 1.7 ± 0.4 μg·FFL/mL milk at 12 h (Group C). The half-lives (t ) were ~19, 5.5, and 60 h, for Groups A, B, and C, respectively. FFL was below the limit of detection (LOD) by 60 h in three Group B cows, but above the LOD at 72, 84, and 120 h in three cows. FFL was above the LOD in milk from Group C's cows for 432-588 h. Plasma values followed the same trends as milk. The results demonstrate that IMM-infused FFL is bioavailable and below the LOD within 72-120 h. The concentration of FFL was detectable in both plasma and milk over the course of 2-3 weeks after SC administration. The absence of residue depletion data presents problems in determining safe levels of FFL residues in milk and edible tissues. The data presented here must not be construed as approval for extra-label use in food animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.