• Marrow CD81 T-cell infiltrates may be a novel predictor of response to donor lymphocyte infusions in patients with relapsed CML.• Reversal of T-cell exhaustion is tightly linked to effective antileukemia responses to donor lymphocyte infusions.Increasing evidence across malignancies suggests that infiltrating T cells at the site of disease are crucial to tumor control. We hypothesized that marrow-infiltrating immune populations play a critical role in response to donor lymphocyte infusion (DLI), an established and potentially curative immune therapy whose precise mechanism remains unknown. We therefore analyzed marrow-infiltrating immune populations in 29 patients (22 responders, 7 nonresponders) with relapsed chronic myelogenous leukemia who received CD4 1 DLI in the pre-tyrosine kinase inhibitor era. Immunohistochemical analysis of pretreatment marrow revealed that the presence of >4% marrow-infiltrating CD8 1 (but not CD4 1 ) T cells predicted DLI response, even in the setting of high leukemia burden. Furthermore, mRNA expression profiling of marrow-infiltrating T cells of a subset of responders compared with nonresponders revealed enrichment of T-cell exhaustionspecific genes in pretreatment T cells of DLI responders and significant downregulation of gene components in the same pathway in responders in conjunction with clinical response. Our data demonstrate that response to DLI is associated with quantity of preexisting marrow CD8 1 T cells and local reversal of T-cell exhaustion. Our studies implicate T-cell exhaustion as a therapeutic target of DLI and support the potential use of novel anti-PD1/PDL1 agents in lieu of
e The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persistent systemic inflammatory disease in immunocompetent mice. Following oral inoculation with S. Typhimurium, mice develop a hematopathological syndrome akin to typhoid fever with splenomegaly, microcytic anemia, extramedullary erythropoiesis, and increased hemophagocytic macrophages in the bone marrow, liver, and spleen. Additionally, there is marked loss of iron from the spleen, an unanticipated result, given the iron sequestration reported in anemia of inflammatory disease. To establish why tissue iron does not accumulate, we evaluated multiple measures of pathology for 4 weeks following oral infection in mice. We demonstrate a quantitative decrease in splenic iron following infection despite increased numbers of splenic phagocytes. Infected mice have increased duodenal expression of the iron exporter ferroportin-1, consistent with increased uptake of dietary iron. Liver and splenic macrophages also express high levels of ferroportin-1. These observations indicate that splenic and hepatic macrophages export iron during S. Typhimurium infection, in contrast to macrophage iron sequestration observed in anemia of inflammatory disease. Tissue macrophage export of iron occurs concurrent with high serum concentrations of interferon gamma (IFN-␥) and interleukin 12 (IL-12). In individual mice, high concentrations of both proinflammatory (tumor necrosis factor alpha [TNF-␣])and anti-inflammatory (IL-10) cytokines in serum correlate with increased tissue bacterial loads throughout 4 weeks of infection. These in vivo observations are consistent with previous cell culture studies and suggest that the relocation of iron from tissue macrophages during infection may contribute to anemia and also to host survival of acute S. Typhimurium infection.T yphoid fever is acquired upon oral ingestion of food or water contaminated with Salmonella enterica serovar Typhi or Paratyphi and remains a serious threat to public health, especially in developing countries (1). Human typhoid fever causes a broad range of clinical signs, including splenomegaly, neuropathy, and hematopathology, such as cytopenias (2), that have been modeled in laboratory mice infected with Salmonella enterica serovar Typhimurium (3). Inbred mouse strains with differing genetic backgrounds are characterized as either sensitive or resistant to S. Typhimurium. Sensitivity to the intracellular bacterial infection is caused by genetic deficiencies in the innate or adaptive immune system (4, 5). For instance, mice lacking the cation transporter Nramp1 (Slc11a1), a regulator of cellular iron metabolism, are extremely sensitive to infection. Nramp1 ϩ mice are considered resistant to S. Typhimurium, because infection is generally nonfatal (6-8). Resistant mice infected by natural oral inoculation develop systemic infection with an acute hematopathological syndrome similar to that of humans with typhoid fever, including fever, anemia, inflammatory disease characterized by periph...
There are no approved therapies for muscle wasting in children infected with human immunodeficiency virus (HIV), which portends poor disease outcomes. To determine whether a soluble ActRIIb receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, can prevent or restore loss of lean body mass and body weight in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus macaques were inoculated with SIVmac239 and, 4 wk postinoculation (WPI) treated with intramuscular injections of 10 mg ⋅ kg(-1) ⋅ wk(-1) ActRIIB.Fc or saline placebo. Body weight, lean body mass, SIV titers, and somatometric measurements were assessed monthly for 16 wk. Age-matched SIV-infected rhesus macaques were injected with saline. Intervention groups did not differ at baseline. Gains in lean mass were significantly greater in the ActRIIB.Fc group than in the placebo group (P < 0.001). Administration of ActRIIB.Fc was associated with greater gains in body weight (P = 0.01) and upper arm circumference than placebo. Serum CD4(+) T-lymphocyte counts and SIV copy numbers did not differ between groups. Administration of ActRIIB.Fc was associated with higher muscle expression of myostatin than placebo. ActRIIB.Fc effectively blocked and reversed loss of body weight, lean mass, and fat mass in juvenile SIV-infected rhesus macaques.
HIV-infected individuals are at an increased risk of osteoporosis despite effective viral suppression. Observations that myostatin null mice have increased bone mass led us to hypothesize that simian immunodeficiency virus (SIV)-associated bone loss may be attenuated by blocking myostatin/TGFβ signaling. In this proof-of-concept study, pair-housed juvenile male rhesus macaques were inoculated with SIVmac239. Four weeks later, animals were treated with vehicle or Fc-conjugated soluble activin receptor IIB (ActR2B·Fc, iv. 10 mg ∗ kg−1 ∗ week−1) – an antagonist of myostatin and related members of TGFβ superfamily. Limb and trunk bone mineral content (BMC) and density (BMD) using dual-energy X-Ray absorptiometry, circulating markers of bone growth and turnover, and serum testosterone levels were measured at baseline and during the 12-week intervention period. The increase in BMC was significantly greater in the ActRIIB.Fc-treated group (+8 g) than in the placebo group (−4 g) (p < 0.05). BMD also increased significantly more in the ActRIIB.Fc-treated macaques (+0.03 g/cm2) than in the placebo-treated animals (+0 g/cm2) (p < 0.005). Serum osteocalcin was about two-fold higher in the ActRIIB.Fc-treated group than in the placebo group (p < 0.05), but serum C-terminal telopeptide and testosterone levels did not differ significantly between groups. The expression levels of TNFalpha (p < 0.05), GADD45 (p
ObJeCTIVe: both the consumption of high-fat diets and exercise are known to produce alterations in metabolism and behavior. This study focuses on the effects of a change to a lowfat diet from a high-fat diet and voluntary exercise on obesity, type-2 diabetic-like symptoms, and locomotor behavior in male C57BL/6J mice. DeSIgN: Mice were initially given either a high-fat diet or regular chow, along with a cage with a running-wheel to mimic exercise, or one without, to determine to what extend exercise affects these symptoms. Then half of the mice given a high-fat diet were switched to regular chow to ascertain if the switch in diet would improve type-2 diabetic-like and obesity symptoms. ReSUlTS: Wheel-running alone produced an improvement in insulin in mice continuously fed a high-fat diet (p=0.006), but running-wheels did not produce any further improvements in mice with regular chow replacement (p=0.999) or in controls (p=0.996). Replacement of a high-fat diet with regular chow led to physiological improvements in insulin (p=0.012) and leptin (p <0.001), glucose tolerance (p <0.001), and obesity (p <0.001), more so than exercise alone. Mice consuming a high-fat diet without a wheel exhibited reduced home-cage activity compared to controls after the diet switch (p=0.030), while no reduction was found in running-wheel activity between high-fat diet and regular chow consuming mice after switching diets (p=0.516). CONCLUSIONS: These results suggest that exercise is only partially beneficial to improving health outcomes in mice consuming a high-fat diet, whereas incorporating a better diet, even without exercise, improves quality of health and can suppress T2DM symptoms and related conditions more so than exercise alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.