Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans.
In primates the primary motor cortex (M1) forms a topographic map of the body, whereby neurons in the medial part of this area control movements involving trunk and hindlimb muscles, those in the intermediate part control movements involving forelimb muscles, and those in the lateral part control movements of facial and other head muscles. This topography is accompanied by changes in cytoarchitectural characteristics, raising the question of whether the anatomical connections also vary between different parts of M1. To address this issue, we compared the patterns of cortical afferents revealed by retrograde tracer injections in different locations within M1 of marmoset monkeys. We found that the entire extent of this area is unified by projections from the dorsocaudal and medial subdivisions of premotor cortex (areas 6DC and 6M), from somatosensory areas 3a, 3b, 1/2, and S2, and from posterior parietal area PE. While cingulate areas projected to all subdivisions, they preferentially targeted the medial part of M1. Conversely, the ventral premotor areas were preferentially connected with the lateral part of M1. Smaller but consistent inputs originated in frontal area 6DR, ventral posterior parietal cortex, the retroinsular cortex, and area TPt. Connections with intraparietal, prefrontal, and temporal areas were very sparse, and variable. Our results demonstrate that M1 is unified by a consistent pattern of major connections, but also shows regional variations in terms of minor inputs. These differences likely reflect requirements for control of voluntary movement involving different body parts.
Corticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas. While 6DR received consistent inputs from prefrontal cortex, area 6DC received few such connections. Conversely, 6DC, but not 6DR, received major projections from the primary motor and somatosensory areas. Projections from the anterior cingulate cortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas preferentially targeted 6DR. Projections from the medial parietal area PE to 6DC were particularly dense, while intraparietal areas (especially the putative homolog of LIP) were more strongly labeled after 6DR injections. Finally, 6DC and 6DR were distinct in terms of inputs from the ventral parietal cortex: projections to 6DR originated preferentially from caudal areas (PG and OPt), while 6DC received input primarily from rostral areas (PF and PFG). Differences in connections suggest that area 6DR includes rostral and caudal subdivisions, with the former also involved in oculomotor control. These results suggest that area 6DC is more directly involved in the preparation and execution of motor acts, while area 6DR integrates sensory and internally driven inputs for the planning of goal-directed actions. They also provide strong evidence of a homologous organization of the dorsal premotor cortex in New and Old World monkeys.
We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks.
Introduction: Accelerated or intensive forms of repetitive transcranial magnetic stimulation (rTMS) are increasingly being explored for their potential to produce more efficient and rapid treatment benefits in major depressive disorder (MDD). However, accelerated or intensive protocols using standard forms of rTMS are still quite time-consuming to apply. Theta burst stimulation (TBS) is a novel form of magnetic stimulation with the potential to produce similar anti-depressant effects but in a much abbreviated period of time. The aim of this study was to investigate the comparative efficacy of an intensive TBS protocol compared to standard rTMS treatment. Methods: 74 outpatients (36 female, mean age 44.36 ± 12.1 years) with MDD received either intensive TBS (3 intermittent TBS treatments per day for 3 days in week 1, 3 treatments a day for 2 days in week 2, and 3 treatments in 1 day in week 3 and in week 4, or standard rTMS (5 daily sessions per week for 4 weeks). Patients were assessed weekly throughout the treatment course, and at 4 weeks after treatment end. Results: There were no significant differences in the degree of reduction in depressive symptoms, the rate of reduction in depressive symptoms, remission or response rates (response rates ¼ 27.8% for intensive group, 26.3% for the standard group, p > 0.05 for all analyses) between the intensive TBS and standard rTMS treatment groups. However, the overall response and remission rates were limited in both groups. There was no difference in rates of side effects, no serious adverse events and no alterations in cognitive performance. Conclusion: Intensively applied TBS appears to have similar efficacy to standard rTMS when these were applied as delivered in this study but does not produce more rapid clinical benefits. The overall response rates in both groups in this study were limited, most likely by the total doses provided in both study arms. Clinical trials registration: Australian New Zealand Clinical Trials Registry: ACTRN12616000443493.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.