Background Pragmatic clinical trials (PCTs) are designed to reflect how an investigational treatment would be applied in clinical practice. As such, unlike their explanatory counterparts, they measure therapeutic effectiveness and are capable of generating high-quality real-world evidence. However, the conduct of PCTs remains extremely rare. The scarcity of such studies has contributed to the emergence of the efficacy-effectiveness gap and has led to calls for launching more of them, including in the field of oncology. This analysis aimed to identify self-labelled pragmatic trials of antineoplastic interventions and to evaluate whether their use of this label was justified. Methods We searched PubMed® and Embase® for publications corresponding with studies that investigated antitumor therapies and that were tagged as pragmatic in their titles, abstracts and/or index terms. Subsequently, we consulted all available source documents for the included trials and extracted relevant information from them. The data collected were then used to appraise the degree of pragmatism displayed by the PCTs with the help of the validated PRECIS-2 tool. Results The literature search returned 803 unique records, of which 46 were retained upon conclusion of the screening process. This ultimately resulted in the identification of 42 distinct trials that carried the ‘pragmatic’ label. These studies examined eight different categories of neoplasms and were mostly randomized, open-label, multicentric, single-country trials sponsored by non-commercial parties. On a scale of one (very explanatory) to five (very pragmatic), the median PCT had a PRECIS-2 score per domain of 3.13 (interquartile range: 2.57–3.53). The most and least pragmatic studies in the sample had a score of 4.44 and 1.57, respectively. Only a minority of trials were described in sufficient detail to allow them to be graded across all domains of the PRECIS-2 instrument. Many of the studies examined also had features that arguably precluded them from being pragmatic altogether, such as being monocentric or placebo-controlled in nature. Conclusion PCTs of antineoplastic treatments are generally no more pragmatic than they are explanatory.
Sterilization is a pivotal topic in the pharmaceutical industry, whereby the nomenclature of “sterile” refers to the absence of viable microorganisms. Since microorganisms can reproduce in the body and cause potentially fatal infections, it is critical to sterilize parenteral products to prevent this. In recent years, 70%–90% of potential drugs and 40% of marketed drugs have demonstrated a low solubility. Micronization is a widely spread approach to increase the dissolution rate. A subset of micronized products require sterilization, but published studies on the effects of sterilization on micronized products are currently lacking. The effect of sterilization on the micronized active pharmaceutical ingredient indomethacin was explored in this study. The sterilization methods in scope were one photon-based method using gamma irradiation and one gas-based method with nitrogen dioxide gas. Indomethacin was micronized using two micronization techniques, cryomilling and spray drying. Different conditions were used for cryomilling where the number of grinding balls in the ball mill and the degree of filling were varied. The solid state of all samples was evaluated after micronization, and only the effectively micronized samples were selected for sterilization with gamma rays and nitrogen dioxide. Gamma irradiation was performed with the active pharmaceutical ingredient stored at −80°C at a commonly used industry standard target dose of 25 kGy. Nitrogen dioxide sterilization took place at 21°C, a concentration of 10 mg/L, a relative humidity of 30% and using two NO2 pulses. Before and after sterilization, all samples were analyzed by high performance liquid chromatography with UV detection, whereby the assay of indomethacin was examined as well as the peak purity and the formation of impurities. In comparison to the non-micronized reference, both sterilization methods demonstrate a significant decrease of content of micronized samples and an increase of the impurity profile. The non-micronized sample showed no significant difference after sterilization. It could be observed that micronized indomethacin samples demonstrate more degradation and are subsequently more susceptible to degradation upon sterilization with gamma rays and nitrogen dioxide gas, driving towards the need for assessment of the micronization impact combined with sterilization approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.