Local-HDP (for Local Hierarchical Dirichlet Process) is a hierarchical Bayesian method that has recently been used for open-ended 3D object category recognition. This method has been proven to be efficient in real-time robotic applications. However, the method is not robust to a high degree of occlusion. We address this limitation in two steps. First, we propose a novel semantic 3D object-parts segmentation method that has the flexibility of Local-HDP. This method is shown to be suitable for open-ended scenarios where the number of 3D objects or object parts is not fixed and can grow over time. We show that the proposed method has a higher percentage of mean intersection over union, using a smaller number of learning instances. Second, we integrate this technique with a recently introduced argumentation-based online incremental learning method, thereby enabling the model to handle a high degree of occlusion. We show that the resulting model produces an explicit set of explanations for the 3D object category recognition task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.