A Ru(ii)-polypyridyl chromophore-catalyst assembly for light-assisted water oxidation is constructed using atomic layer deposition with no covalent bonds between molecules required for bilayer formation.
Drug potency influences PI3K/MEK inhibitor-induced target inhibition, adaptive kinome reprogramming, efficacy, and synergy. Our findings suggest that combination therapies with highly potent, brain-penetrant kinase inhibitors will be required to improve patient outcomes.
Here, the application of the fluorinated polymer [Dupont AF, a copolymer of 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole and tetrafluoroethylene] is described in stabilizing phosphonate-derivatized molecular assemblies on oxide electrodes. In the procedure, the polymer was dip-coated onto the surfaces of oxide electrodes with pre-bound, phosphonate-derivatized chromophores and assemblies, including assemblies for water oxidation. The results of the experiments showed a high degree of stabilization by the added polymer and a demonstration of its use in stabilizing surface-bound assemblies for water-oxidation catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.