1,4-Benzodiazepines are used in the treatment of anxiety disorders but have limited long term use due to adverse effects. HZ-166 (2) has been shown to have anxiolytic-like effects with reduced sedative/ataxic liabilities. A 1,3-oxazole KRM-II-81 (9) was discovered from a series of six bioisosteres with significantly improved pharmacokinetic and pharmacodynamic properties as compared to 2. Oxazole 9 was further characterized and exhibited improved anxiolytic-like effects in a mouse marble burying assay and a rat Vogel conflict test.
HZ-166 has previously been characterized as an α2,3-selective GABA receptor modulator with anticonvulsant, anxiolytic, and anti-nociceptive properties but reduced motor effects. We discovered a series of ester bioisosteres with reduced metabolic liabilities, leading to improved efficacy as anxiolytic-like compounds in rats. In the present study, we evaluated the anticonvulsant effects KRM-II-81 across several rodent models. In some models we also evaluated key structural analogs. KRM-II-81 suppressed hyper-excitation in a network of cultured cortical neurons without affecting the basal neuronal activity. KRM-II-81 was active against electroshock-induced convulsions in mice, pentylenetetrazole (PTZ)-induced convulsions in rats, elevations in PTZ-seizure thresholds, and amygdala-kindled seizures in rats with efficacies greater than that of diazepam. KRM-II-81 was also active in the 6 Hz seizure model in mice. Structural analogs of KRM-II-81 but not the ester, HZ-166, were active in all models in which they were evaluated. We further evaluated KRM-II-81 in human cortical epileptic tissue where it was found to significantly-attenuate picrotoxin- and AP-4-induced increases in firing rate across an electrode array. These molecules generally had a wider margin of separation in potencies to produce anticonvulsant effects vs. motor impairment on an inverted screen test than did diazepam. Ester bioisosters of HZ-166 are thus presented as novel agents for the potential treatment of epilepsy acting via selective positive allosteric amplification of GABA signaling through α2/α3-containing GABA receptors. The in vivo data from the present study can serve as a guide to dosing parameters that predict engagement of central GABA receptors.
Pain remains a challenging clinical condition and spinal GABAA receptors are crucial modulators of pain processing. α2/α3-subtype GABAA receptors mediate the analgesic actions of benzodiazepines. Positive allosteric modulators (PAMs) at α2/α3-subtype GABAA receptors may have analgesic potential. Here we report a new selective α2/α3-subtype GABAA receptor PAM in in vitro and in vivo pain assays. KRM-II-81 demonstrated similar efficacy at α1/α2/α3 GABAA receptors and negligible efficacy at α4/α5/α6 GABAA receptors, with α2 and α3- subtypes being 17- and 28-fold more potent than α1 subtypes in HEK-293T cells expressing GABAA receptors with different α subunits. In contrast, KRM-II-18B showed significant efficacy at α1/α2/α3/α5 subtypes, with similar potency at α1/α2/α3 subtypes. Both PAMs and morphine dose-dependently decreased 0.6% acetic acid- and 0.32% lactic acid-induced writhing. The effects of both PAMs were reversed by the benzodiazepine receptor antagonist flumazenil, confirming their action at the benzodiazepine binding site of GABAA receptors. Both PAMS and morphine all dose-dependently reversed 0.32% lactic acid (but not 0.6% acetic acid)-induced suppression of nesting behavior. Acetaminophen, but neither PAM, reversed acid-depressed locomotor activity. Combined, these findings suggest that KRM-II-81 is a selective α2/α3 subtype GABAA PAM with significant antinociceptive effects in chemical stimulation-induced pain in mice.
The α2,3selective potentiator of GABAA receptors, KRM-II-81, reduces nociceptive-associated behaviors induced by formalin and spinal nerve ligation in rats. Pharmacology Biochemistry and Behavior.
Medulloblastoma is the most common childhood malignant brain tumor. The most lethal medulloblastoma subtype exhibits a high expression of the GABAA receptor α5 subunit gene and MYC amplification. New benzodiazepines have been synthesized to function as α5-GABAA receptor ligands, but these had undesirable side effects in the nude mouse xenograft model system (4). To compare their efficacy with that of standard-of-care treatments, we have employed a newly developed microscale implantable device that allows for high-throughput localized intratumor drug delivery and efficacy testing. We have identified a benzodiazepine derivative, KRM-II-08, as a new potent inhibitor in several α5-GABAA receptor expressing tumor models. Obtaining high-throughput drug efficacy data within a native tumor microenvironment as detailed herein, prior to pharmacological optimization for bioavailability or safety and without systemic exposure or toxicity, may allow for rapid prioritization of drug candidates for further pharmacological optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.