The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) forms nanoscopic clusters in cell plasma membranes; however, the processes determining PIP2 mobility and thus its spatial patterns are not fully understood. Using super-resolution imaging of living cells, we find that PIP2 is tightly colocalized with and modulated by overexpression of the influenza viral protein hemagglutinin (HA). Within and near clusters, HA and PIP2 follow a similar spatial dependence, which can be described by an HA-dependent potential gradient; PIP2 molecules move as if they are attracted to the center of clusters by a radial force of 0.079 5 0.002 pN in HAb2 cells. The measured clustering and dynamics of PIP2 are inconsistent with the unmodified forms of the raft, tether, and fence models. Rather, we found that the spatial PIP2 distributions and how they change in time are explained via a novel, to our knowledge, dynamic mechanism: a radial gradient of PIP2 binding sites that are themselves mobile. This model may be useful for understanding other biological membrane domains whose distributions display gradients in density while maintaining their mobility.
Background: Coding region determinant-binding protein (CRD-BP) interacts physically with oncogenic mRNAs. Results: Point mutation in the K-homology (KH) domains of CRD-BP abolishes its RNA-binding ability. Conclusion: Two KH domains of CRD-BP are required for efficient binding to oncogenic mRNAs and for granule formation in zebrafish embryos. Significance: Learning how the KH domains interact with mRNAs is crucial for understanding oncogenic function of CRD-BP.
The stabilization of glioma-associated oncogene 1 (GLI1) mRNA by coding region determinant binding protein (CRD-BP) through the Wnt/b-catenin signaling pathway is implicated in the proliferation of colorectal cancer and basal cell carcinoma. Here, we set out to characterize the physical interaction between CRD-BP and GLI1 mRNA so as to find inhibitors for such interaction. Studies using CRD-BP variants with a point mutation in the GXXG motif at each KH domain showed that KH1 and KH2 domain are critical for the binding of GLI1 RNA. The smallest region of GLI1 RNA binding to CRD-BP was mapped to nucleotides (nts) 320-380. A 37-nt S1 RNA sense oligonucleotide, containing two distinct stem-loops present in nts 320-380 of GLI1 RNA, was found to be effective in blocking CRD-BP-GLI1 RNA interaction. Studies using various competitor RNAs with modifications to S1 RNA oligonucleotide further displayed that both the sequences and the structure of the two stem-loops are important for CRD-BP-GLI1 RNA binding. The role of the two-stem-loop motif in influencing CRD-BP-RNA interaction was further investigated in cells. The 29-O-methyl derivative of the S1 RNA oligonucleotide significantly decreased GLI1, c-myc, and CD44 mRNA levels, in a panel of colon and breast cancer cells. The results from this study demonstrate the potential importance of the two-stem-loop motif as a target region for the inhibition of the CRD-BP-GLI1 RNA interaction and Hedgehog signaling pathway. Such results pave the way for the development of novel inhibitors that act by destabilizing the CRD-BP-GLI1 mRNA interaction.
This study emphasizes the precipitation and the maximum and minimum temperature trend and presents the results of study in temporal and spatial scales, after performing statistical analysis of the Xin’anjiang-Fuchunjiang watershed. Statistical Mann Kendall and Theil Sen techniques were used to determine the trend and its magnitude, respectively, and for determining the start and abrupt change in the trend, Sequential Mann Kendall test has been performed. Furthermore, statistical tests were performed to determine the overall trend in the area at a regional basis. For the removal of the serial effect of the data, prewhitening technique is applied. In this study, statistical tests were performed at 1901–2013 precipitation and temperature series and then after detection of the change year precipitation data were divided into two different scenarios of 1901–1960 period and 1961–2013 period. The results showed that precipitation trend is insignificant while maximum and minimum temperature have increased during 1901–2013 period except for some stations of autumn and summer seasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.