Merkel cell polyomavirus (MCPyV) is the major causative factor of the rare but aggressive cancer, Merkel cell carcinoma (MCC). Two characteristics of MCPyV-positive MCCs are integration of the viral genome and expression of a truncated version of one of its oncogenic proteins, namely large T antigen. The strong association of MCPyV with MCC development has incited researchers to further investigate a possible role of this virus in other cancers. However, many of the examples displaying the presence of the virus in the various non-MCC cancers are not able to clearly demonstrate a direct connection between cellular transformation and the presence of the virus. The prevalence of the virus is significantly lower in non-MCC cancers compared to MCCs, with a lower level of viral load and sparse viral protein expression. Moreover, the state of the viral genome, and whether a truncated large T antigen is expressed, has rarely been investigated. Nonetheless, considering the strong oncogenic potential of MCPyV proteins in MCC, the plausible contribution of MCPyV to transformation and cancer growth in non-MCC tumors cannot be ruled out. Furthermore, the absence of MCPyV in cancers does not exclude a hit-and-run mechanism, or the oncoproteins of MCPyV may potentiate the neoplastic process mediated by co-infecting oncoviruses such as high-risk human papillomaviruses and Epstein-Barr virus. The current review is focusing on the available data describing the presence of MCPyV in non-MCC tumors, with an aim to provide a comprehensive overview of the corresponding literature and to discuss the potential contribution of MCPyV to non-MCC cancer in light of this.
Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.
Despite the fact that the transcription factor ATOH1 is a master regulator of Merkel cell development, its role in Merkel cell carcinoma (MCC) carcinogenesis remains controversial. Here, we provide several lines of evidence that ATOH1 is a lineage-dependent oncogene in MCC. Luciferase assays revealed binding of ATOH1 and subsequent activation to the promoter of miR-375, which is one of the most abundant microRNAs in MCCs. Overexpression of ATOH1 in variant MCC cell lines and fibroblasts induced miR-375 expression, whereas ATOH1 knockdown in classical MCC cell lines reduced miR-375 expression. Moreover, ATOH1 overexpression in these cells changed their growth characteristics from adherent to suspension and/orspheroidal growth, that is, resembling the neuroendocrine growth pattern of classical MCC cell lines. Notably, ectopic expression of different Merkel cell polyomavirus (MCPyV)-derived truncated large T antigens induced ATOH1 expression in fibroblasts, which was paralleled by miR-375 expression and similar morphologic changes. In summary, MCPyVassociated carcinogenesis is likely to induce the characteristic neuroendocrine features of MCC via induction of ATOH1; thus, ATOH1 can be regarded as a lineage-dependent oncogene in MCC.
Merkel cell carcinoma (MCC) is a rare, highly aggressive neuroendocrine skin cancer. In more than 80% of the cases, Merkel cell polyomavirus (MCPyV) is a causal factor. The oncogenic potential of MCPyV is mediated through its viral oncoproteins, large T antigen (LT) and small t antigen (sT). To investigate the role of cytokines in MCC, a PCR array analysis for genes encoding inflammatory cytokines and receptors was performed on MCPyV-negative and MCPyV-positive MCC cell lines, respectively. We detected an increased expression of CCL17/TARC in the MCPyV-positive MKL2 cell line compared to the MCPyV-negative MCC13 cell line. Transfection studies in MCC13 cells with LT expression plasmid, and a luciferase reporter plasmid containing the CCL17/TARC promoter, exhibited stimulated promoter activity. Interestingly, the ectopic expression of CCL17/TARC upregulated MCPyV early and late promoter activities in MCC13 cells. Furthermore, recombinant CCL17/TARC activated both the mitogen-activated protein kinase and the NF-κB pathways. Finally, immunohistochemical staining on human MCC tissues showed a strong staining of CCL17/TARC and its receptor CCR4 in both LT-positive and -negative MCC. Taken together, CCL17/TARC and CCR4 may be a potential target in MCC therapy providing MCC patients with a better overall survival outcome.
Background: Merkel cell polyomavirus (MCPyV) is a human polyomavirus that establishes a lifelong harmless infection in most individuals, with dermal fibroblasts believed to be the natural host cell. However, this virus is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. Several MCPyV variants with polymorphism in their promoter region have been isolated, but it is not known whether these differences affect the biological properties of the virus. Methods: Using transient transfection studies in human dermal fibroblasts and the MCC cell line MCC13, we compared the transcription activity of the early and late promoters of the most commonly described non-coding control region MCPyV variant and six other isolates containing specific mutation patterns. Results: Both the early and late promoters were significantly stronger in human dermal fibroblasts compared with MCC13 cells, and a different promoter strength between the MCPyV variants was observed. The expression of fulllength large T-antigen, a viral protein that regulates early and late promoter activity, inhibited early and late promoter activities in both cell lines. Nonetheless, a truncated large T-antigen, which is expressed in virus-positive MCCs, stimulated the activity of its cognate promoter. Conclusion: The promoter activities of all MCPyV variants tested was stronger in human dermal fibroblasts, a cell line that supports viral replication, than in MCC13 cells, which are not permissive for MCPyV. Truncated large Tantigen, but not full-length large T-antigen stimulated viral promoter activity. Whether, the difference in promoter strength and regulation by large T-antigen may affect the replication and tumorigenic properties of the virus remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.