Microalloying additions are critical for grain size control during thermo-mechanical processing. The addition of niobium is known to delay the onset and growth of recrystallization. A physically-based model for the interaction of strain-induced precipitation, recovery and recrystallization is presented. A key feature of the model is the incorporation of the effect of precipitation on the nucleation of recrystallization. Quantitative agreement between the experimental measurements and the model predictions has also been demonstrated. The model offers valuable insight into the relative contributions of solute and precipitate Nb as well as the optimum conditions for strain accumulation.
Research on and use of biodiesels for engines is growing continuously in the present era. Compression ignition (CI) engine performance for biodiesels of blends B20 from Acid oil, Mahua oil, and Castor oil is experimentally investigated. The engine performance analysis in the form of brake-specific fuel consumption, brakespecific energy consumption, brake thermal efficiency (BTE), exhaust gas temperature (EGT), and air fuel ratio are compared with diesel as base fuel. Emission characteristics like CO, CO 2 , NOx, and opacity are comparatively studied in detail for the considered biodiesels. The entire study is compared with the performance of engine when pure diesel is chosen as fuel. From the complete analysis it was observed that the BTE was higher for Acid oil and Mahua oil among the biodiesels used. And regarding CO emissions, Mahua oil showed lower effect than other biodiesels. Upto 6% increase in EGT of Mahua oil was obtained at no load and for other loads the percent reduced. For all the biodiesels the % enhancement in Co, CO 2 , and NOx was more than 60% at highest load compared with diesel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.