Sexually naive male mice show robust aggressive behavior toward pups. However, the proportion of male mice exhibiting pup-directed aggression declines after cohabitation with a pregnant female for 2 weeks after mating. Subsequently, on becoming fathers, they show parental behavior toward pups, similar to maternal behavior by mothers. To elucidate the neural mechanisms underlying this behavioral transition, we examined brain regions differentially activated in sexually naive males and fathers after exposure to pups, using c-Fos expression as a neuronal activation marker. We found that, after pup exposure, subsets of neurons along the vomeronasal neural pathway-including the vomeronasal sensory neurons, the accessory olfactory bulb, the posterior medial amygdala, the medioposterior division of the bed nucleus of stria terminalis, and the anterior hypothalamic area-were more strongly activated in sexually naive males than in fathers. Notably, c-Fos induction was not observed in the vomeronasal sensory neurons of fathers after pup exposure. Surgical ablation of the vomeronasal organ in sexually naive males resulted in the abrogation of pup-directed aggression and simultaneous induction of parental behavior. These results suggest that chemical cues evoking pup-directed aggression are received by the vomeronasal sensory neurons and activate the vomeronasal neural pathway in sexually naive male mice but not in fathers. Thus, the downregulation of pup pheromone-induced activation of the vomeronasal system might be important for the behavioral transition from attack to parenting in male mice.
Many cell-intrinsic mechanisms have been shown to regulate neuronal subtype specification in the mammalian neocortex. However, how much cell environment is crucial for subtype determination still remained unclear. Here, we show that knockdown of Protocadherin20 (Pcdh20), which is expressed in post-migratory neurons of layer 4 (L4) lineage, caused the cells to localize in L2/3. The ectopically positioned “future L4 neurons” lost their L4 characteristics but acquired L2/3 characteristics. Knockdown of a cytoskeletal protein in the future L4 neurons, which caused random disruption of positioning, also showed that those accidentally located in L4 acquired the L4 characteristics. Moreover, restoration of positioning of the Pcdh20-knockdown neurons into L4 rescued the specification failure. We further suggest that the thalamocortical axons provide a positional cue to specify L4 identity. These results suggest that the L4 identity is not completely determined at the time of birth but ensured by the surrounding environment after appropriate positioning.DOI:
http://dx.doi.org/10.7554/eLife.10907.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.